A collaborative team of researchers reported that in the liverwort Marchantia polymorpha, the number of mitochondria in the spermatozoid (sperm) is controlled by autophagy during spermiogenesis.
Most eukaryotic cells possess mitochondria in greatly varying numbers and shapes depending on the cell type and cellular conditions. Compared with other cell types, eukaryotic sperm cells generally exhibit a characteristic mitochondrial morphology and distribution, while also exhibiting a remarkable diversity among species.
Though the word “sperm” brings to the mind images of the mammalian sperms that “swim”, certain groups of plants also use sperms for sexual reproduction. One such group is the Bryophytes that are commonly found in city parks and backyards of homes.
A single bryophyte somatic cell possesses anywhere from tens to hundreds of mitochondria. By contrast, the spermatozoid cell possesses a fixed number of two mitochondria: one in the head and the other in the tail of the cell body. However, the mechanism by which these two mitochondria are formed during spermiogenesis remains unclear.
In an article published in Cell Reports, this research team examined in detail how the number and shape of mitochondria change during the transformation of spermatids into spermatozoids (spermiogenesis) in liverworts.
The first author of the article, spoke of the team’s findings that in liverwort, the number of mitochondria decreases as spermiogenesis progresses until only one remains. The remaining mitochondrion then divides asymmetrically into two mitochondria; the larger mitochondrion becomes the anterior mitochondrion and the smaller one becomes the posterior mitochondrion. When this mitochondrial division was inhibited, sperms with only an anterior mitochondrion were formed.
The research team investigated the mechanism underlying the mitochondrial number reduction, with a special focus on autophagy. Autophagy degrades cellular components, including the organelles, by engulfing them into double-membraned sacs (autophagosomes) that fuse with the vacuoles/lysosomes.
When the functions of the genes required for autophagy were lost, the mitochondria were not degraded during spermiogenesis, and a large number of mitochondria remained in the mutant spermatozoid. The research team also found through electron microscopy that mitochondria were selectively engulfed by autophagosomes during spermiogenesis in the wild-type liverworts. These results indicated that autophagy reduces the number of mitochondria during spermiogenesis.
The leader of the research team, commented that "This study reveals how the characteristic mitochondrial pattern in bryophyte spermatozoids arises and that autophagy is deeply involved in this process. During the process of spermiogenesis in animals, the removal of excessive cytoplasm occurs, but autophagy does not seem to play a substantial role in this process. Instead, a neighboring cell “takes-up” the excessive cytoplasm and organelles by phagocytosis to remove it from the developing sperm. Thus, plants and animals have employed completely different mechanisms to remove organelles during spermiogenesis.”
https://www.cell.com/cell-reports/fulltext/S2211-1247(22)00761-6
http://sciencemission.com/site/index.php?page=news&type=view&id=publications%2Fdynamic-rearrangement&filter=22
Dynamic rearrangement and autophagic degradation of the mitochondria during plant spermiogenesis
- 997 views
- Added
Latest News
Does lymphatic system produ…
By newseditor
Posted 07 Feb
Targeting toxic soluble Aβ…
By newseditor
Posted 07 Feb
A change in brain function…
By newseditor
Posted 06 Feb
Structures of LRP2 reveal a…
By newseditor
Posted 06 Feb
The structure of a function…
By newseditor
Posted 05 Feb
Other Top Stories
Circadian regulation of muscle growth
Read more
Improving anxiety and OCD by targeting presynaptic histamine receptors
Read more
How the mammalian brain adapts to seasons
Read more
An auto-antigen biomarker identified in cardiovascular diseases
Read more
Drinking blocks norepinephrine release that promotes attention
Read more
Protocols
High-yield vesicle-packaged…
By newseditor
Posted 05 Feb
Machine learning prediction…
By newseditor
Posted 09 Jan
Differentiating PC12 cells…
By newseditor
Posted 09 Jan
Ultrasensitive sensors reve…
By newseditor
Posted 05 Jan
In vitro-derived medium spi…
By newseditor
Posted 04 Jan
Publications
Progression of regional cor…
By newseditor
Posted 07 Feb
Early diagnosis and treatme…
By newseditor
Posted 07 Feb
Disinhibition of the orbito…
By newseditor
Posted 06 Feb
Renal control of life-threa…
By newseditor
Posted 06 Feb
Synaptotagmin-1 is a Ca2+ s…
By newseditor
Posted 06 Feb
Presentations
Hydrogels in Drug Delivery
By newseditor
Posted 12 Apr
Lipids
By newseditor
Posted 31 Dec
Cell biology of carbohydrat…
By newseditor
Posted 29 Nov
RNA interference (RNAi)
By newseditor
Posted 23 Oct
RNA structure and functions
By newseditor
Posted 19 Oct
Posters
ASCO-2020-HEALTH SERVICES R…
By newseditor
Posted 23 Mar
ASCO-2020-HEAD AND NECK CANCER
By newseditor
Posted 23 Mar
ASCO-2020-GENITOURINARY CAN…
By newseditor
Posted 23 Mar
ASCO-2020-GENITOURINARY CAN…
By newseditor
Posted 10 Mar
ASCO-2020-GYNECOLOGIC CANCER
By newseditor
Posted 10 Mar