Pain, especially chronic pain, is a common neurological phenomenon. The most common chronic pain conditions include low back pain, arthritis pain, migraine and cancer pain—all of which seriously affect people’s physical and mental health. Opioids, such as morphine and fentanyl, are currently the most widely used potent pain-relief drugs. They produce analgesic effects by acting on G protein-coupled receptors, the opioid receptors.
Most of the opioids used clinically are agonists of the μ opioid receptor (μOR). The use of opioid drugs causes many side effects including addiction, respiratory depression, and constipation. The analgesic effects of opioids were previously reported to be mediated through the G protein signaling pathway, while the side effects were caused by the arrestin signaling pathway of μOR. However, the lack of molecular understanding of the preferential G protein signaling mechanism of μOR has greatly hindered the rational design and discovery of G protein-biased μOR agonists for potentially safer pain treatment.
In a study recently published in Cell, research teams reported and analyzed the high-resolution cryogenic electron microscopy (cryo-EM) structures of human μOR activated by opioid analgesics such as fentanyl, morphine, and oliceridine, thus revealing for the first time the mechanisms of recognition and activation of μOR induced by fentanyl and morphine.
The researchers first obtained the three-dimensional structures of human μOR bound to balanced agonists such as fentanyl, morphine, and peptidomimetic Tyr-D-Ala-Gly-N-Me-Phe-Gly-ol (DAMGO). These agonists exhibited both G protein and arrestin signaling activities. The researchers also solved μOR complexed with G protein-biased agonists such as TRV130, SR17018, and PZM21.
Then they analyzed the signaling properties of μOR under the activation of different signaling agonists by functional analysis at the cellular level and molecular dynamics simulations. The results showed that, compared with morphine, fentanyl occupied an extra binding pocket at the extracellular side of μOR around TM2 and TM3. In addition, the aniline ring side chain of fentanyl formed π-π hydrophobic interactions with residues W295 and Y328. The more extended interactions of fentanyl with μOR contributes to the 50-100 times higher potency of fentanyl compared with morphine.
Based on the structure of fentanyl-bound μOR, the researchers further explored the structure-activity relationship (SAR) of fentanyl and its derivatives with μOR using molecular docking and mutagenesis studies. They found that the potencies of fentanyl and fentanyl analogs were highly associated with varying degrees of interaction of the ligands with μOR residues such as D149, Y150, W135, and W320.
Intensive structural analysis and molecular dynamics simulations revealed that G protein-biased agonists such as PZM21 tend to bind to the TM2/3 side of the μOR ligand-binding pocket. In contrast, balanced agonists like fentanyl and DAMGO showed more extensive and balanced interactions with μOR transmembrane domains, leading to μOR having a more compact intracellular cavity. This condition was favorable for the arrestin coupling of μOR, thus explaining the molecular determinants necessary for the arrestin activity of μOR.
Fentanyl and its analogs constitute the major cause of the “opioid crisis.” However, how they bind and activate μOR has remained elusive. This study presents the structure of fentanyl-bound μOR for the first time and reveals the specific fentanyl-binding mode compared with that of morphine. It provides insight into the SAR of fentanyl and its analogs. It also increases molecular understanding of the biased agonism and ligand selectivity of μOR through the combined use of multiple functional assays and molecular dynamics simulation. This study deepens understanding of the regulation mechanism underlying μOR signal transduction and may facilitate development of next-generation opioid analgesics with fewer side effects.
https://www.cell.com/cell/fulltext/S0092-8674(22)01260-0
http://sciencemission.com/site/index.php?page=news&type=view&id=publications%2Fmolecular-recognition&filter=22
How fentanyl and morphine act on μ opioid receptor to relieve pain
- 1,068 views
- Added
Edited
Latest News
A new cardiovascular risk f…
By newseditor
Posted 09 Sep
Your brain ages at differen…
By newseditor
Posted 09 Sep
A bacterial defense with po…
By newseditor
Posted 06 Sep
Type I interferon responses…
By newseditor
Posted 06 Sep
Cellular pathways to Alzhei…
By newseditor
Posted 06 Sep
Other Top Stories
Room temperature x-ray crystallography of COVID-19 main protease
Read more
Seizure identification and localization in real-time by artificial…
Read more
Preserving pancreatic tissue slice in culture for at least 10 days
Read more
Continuous monitoring for COVID-19 using wireless, soft, skin-inter…
Read more
Precise connectomic targeting of deep brain stimulation to treat ob…
Read more
Protocols
Clinical utility of a blood…
By newseditor
Posted 06 Sep
A glia-enriched stem cell 3…
By newseditor
Posted 01 Sep
Mouse models to investigate…
By newseditor
Posted 30 Aug
A brief guide to studying e…
By newseditor
Posted 28 Aug
Single-cell EpiChem jointly…
By newseditor
Posted 24 Aug
Publications
Unidirectional association…
By newseditor
Posted 09 Sep
Mechanisms of mechanotransd…
By newseditor
Posted 09 Sep
The crosstalk between metab…
By newseditor
Posted 09 Sep
Brain clocks capture divers…
By newseditor
Posted 09 Sep
Urinary tract infections: p…
By newseditor
Posted 09 Sep
Presentations
Hydrogels in Drug Delivery
By newseditor
Posted 12 Apr
Lipids
By newseditor
Posted 31 Dec
Cell biology of carbohydrat…
By newseditor
Posted 29 Nov
RNA interference (RNAi)
By newseditor
Posted 23 Oct
RNA structure and functions
By newseditor
Posted 19 Oct
Posters
A chemical biology/modular…
By newseditor
Posted 22 Aug
Single-molecule covalent ma…
By newseditor
Posted 04 Jul
ASCO-2020-HEALTH SERVICES R…
By newseditor
Posted 23 Mar
ASCO-2020-HEAD AND NECK CANCER
By newseditor
Posted 23 Mar
ASCO-2020-GENITOURINARY CAN…
By newseditor
Posted 23 Mar