Brain cells often cluster and grow together creating three-dimensional columns. While this pillar-like pattern of neurons is established, the exact mechanism behind its formation is still elusive. A research team has been closely studying this phenomenon. Their recent findings explain how molecules in the brain work in conjunction to create the architectural marvels that are the columns.
The researchers base much of their work on the Drosophila (fruit fly) due to the organism's genetic similarities to humans. In this study they focused on the visual center of the fly's brain in a region known as the medulla. This region resembles the human cerebral cortex--the primary seat of reasoning. Developing columns in the medulla were photographed in real-time to find that a protein known as Fmi was abundant in the growing stages of the fly and vanished shortly after. Fmi also partakes in a process known as planar cell polarity (PCP) which drives the spatial orientation of a cell in two-dimensional space. Thus, it was purported that PCP was also at play in the development of columns. Indeed, deactivation of PCP components resulted in impaired column formation. What's more, a new candidate, Fz2, was found to be working closely with the individual PCP components.
Fz2 is linked to a cellular pathway called Wnt signaling. A close inspection of the medulla revealed that prime regulators of the Wnt pathway, DWnt4 and DWnt10, were operational in the vicinity. When DWnt4 and DWnt10 were also disabled, a disruption of column structure in neighboring regions followed. Column construction was controlled by a complex chain of architects.
The authors have previously revealed three neurons types--R7, R8 and Mi1-- to comprise the columns. Thus, they then investigated the role of Wnt/PCP in these neurons. Switching PCP off resulted in the Mi1 and R8 neurons changing direction, confirming that orientation was controlled by this pathway. On the other hand, when Wnt signaling was turned off the Mi1 neurons also showed structural impairment. Wnt/PCP was, therefore, instrumental to proper spatial and structural development of the columns.
This study reveals the intertwined nature of the mechanisms that drive brain development. "[We] show that Wnt ligands globally regulate neuronal orientation and column arrangement through Fz2/planar cell polarity signaling in a three-dimensional space in the brain", summarize the researchers. These processes are key to monitoring healthy growth and tracking disorders in the developing brain.
https://www.cell.com/cell-reports/fulltext/S2211-1247(20)31294-8
http://sciencemission.com/site/index.php?page=news&type=view&id=publications%2Fdwnt4-and-dwnt10&filter=22
How signals help in the development and maintenance of neuronal columns
- 402 views
- Added
Edited
Latest News
Alleviating Parkinson's symptoms in monkeys with autologous stem cells
Oscillations in a specific protein controls muscle growth!
Increased stem cell proliferation in atherosclerosis accelerates clonal hematopoiesis
Astrocyte network breakdown in epilepsy
Neuromodulation of the cerebellum restores movement in ataxia
Other Top Stories
Centriole amplification and size deregulation implicated in cancer development
Tumor suppressor protein targets liver cancer
Launch switch for most common malignant pediatric brain tumor
Pap test fluids used in gene-based screening test for two gyn cancers
Limiting tumors' ability to hide from the immune system
Protocols
Dual-Angle Protocol for Doppler Optical Coherence Tomography to Improve Retinal Blood Flow Measur…
Detection of protein SUMOylation in vivo
In vivo analysis of protein sumoylation induced by a viral protein: Detection of HCMV pp71-induce…
Determination of SUMOylation sites
miR-Selection 3'UTR Target Selection Kit
Publications
Systematic analysis of gut microbiome reveals the role of bacterial folate and homocysteine metab…
Soluble ACE2-mediated cell entry of SARS-CoV-2 via interaction with proteins related to the renin…
Oxidative Stress and Redox-Modulating Therapeutics in Inflammatory Bowel Disease
Paradise Lost: The Neurobiological and Clinical Consequences of Child Abuse and Neglect
Oscillations of Delta-like1 regulate the balance between differentiation and maintenance of muscl…
Presentations
AMYLOIDOSIS
Heart Failure
The Neurobiology of Trauma
Oxidative Stress
The Neurobiology of Addiction
Posters
ASCO-2020-GASTROINTESTINAL CANCER–COLORECTAL AND ANAL
ASCO-2020-DEVELOPMENTAL THERAPEUTICS–IMMUNOTHERAPY
ASCO-2020-DEVELOPMENTAL THERAPEUTICS–MOLECULARLY TARGETED AGENTS AND TUMOR BIOLOGY
ASCO-2020-CENTRAL NERVOUS SYSTEM TUMORS
ASCO-2020-DEVELOPMENTAL THERAPEUTICS–IMMUNOTHERAPY