The researchers have identified a four-protein complex that appears to play a key role in generating ribosomes – organelles that serve as protein factories for cells – as well as a surprising part in neurodevelopmental disorders. These findings, published in Cell Reports, could lead to new ways to manipulate ribosome production, which could impact a variety of conditions that affect human health.
“Ribosomes are fundamental for life, but we’ve had an incomplete understanding of how they’re put together and how the process of ribosome production is regulated,” said lead author. “Our findings shed significant light on these questions.”
The lead explained that ribosomes are present in varying amounts in every cell of every organism on Earth. Because of their key role as protein producers, variations from these natural set points can have deleterious consequences. For example, cancer cells tend to increase ribosome production to boost protein production necessary for unchecked cell division. In addition, a group of rare diseases known as ribosomopathies – characterized by abnormal ribosome production – manifests with a variety of symptoms including anemia, craniofacial defects, and intellectual disability.
Although every species has ribosomes, most of what’s known about ribosome biogenesis has come from the popular lab model, yeast. The basics of this process are the same for human ribosome biogenesis, th eauthor said, but the specifics are not. Consequently, the details that make human ribosome generation unique have been unknown.
To learn more about this process, the authors started by developing a technique that prompted old ribosomes to glow red and newly generated ribosomes to glow green. The researchers used this tool on several different human cell types, confirming different rates of ribosome production in each.
Using the gene editing tool called CRISPR, the researchers inactivated individual genes to identify those that might be key players in ribosome biogenesis. Their search turned up four genes known as CINP, SPATA5L1, C1orf109, and SPATA5. Further research showed that these genes come together into a complex that strips a placeholder protein from ribosomes when assembly is almost complete, allowing a different protein to take its place for ribosome maturation.
Previously, SPATA5’s function in cells had been unknown; however, mutations in this gene have been associated with neurodevelopmental disorders including microcephaly, hearing loss, epilepsy, and intellectual disability. When the researchers inserted two of these mutations into cells, causing them to create a mutant SPATA5 protein, the cells couldn’t generate the normal level of functional ribosomes – suggesting that these neurodevelopmental disorders could stem from ribosome problems.
The author said that they plan to study why the central nervous system appears to be more sensitive than other cell types to ribosomal disruptions and added that these findings could eventually lead to new treatments for cancer, ribosomopathies, and other conditions affected by over- or under-production of proteins.
https://www.cell.com/cell-reports/fulltext/S2211-1247(22)00345-X
http://sciencemission.com/site/index.php?page=news&type=view&id=publications%2Flabeling-of-heterochroni&filter=22
Identification of a new protein in ribosome generation
- 1,263 views
- Added
Latest News
Citrullination is a key pla…
By newseditor
Posted 14 Sep
Senolytic therapy clinical…
By newseditor
Posted 14 Sep
Genetic tools probe microbi…
By newseditor
Posted 13 Sep
A secret passage for mutant…
By newseditor
Posted 11 Sep
Specialized T cells in the…
By newseditor
Posted 10 Sep
Other Top Stories
Key role of glucose in brain activity
Read more
A gene required for normal sperm morphogenesis identified!
Read more
Does hormone mediate talk between brain and bones?
Read more
A new pathway for clearing misfolded proteins
Read more
Astrocyte dysfunction causes cognitive decline
Read more
Protocols
D-LMBmap: a fully automated…
By newseditor
Posted 30 Sep
Genetic manipulation of Pat…
By newseditor
Posted 13 Sep
Single-nucleus RNA sequenci…
By newseditor
Posted 08 Sep
Engineering RNA export for…
By newseditor
Posted 25 Aug
ATP production from electri…
By newseditor
Posted 21 Aug
Publications
Monoamines' role in islet c…
By newseditor
Posted 03 Oct
A cholinergic circuit that…
By newseditor
Posted 03 Oct
The emerging role of recept…
By newseditor
Posted 02 Oct
Total recall: the role of P…
By newseditor
Posted 02 Oct
The 2023 Nobel Prize in Phy…
By newseditor
Posted 02 Oct
Presentations
Hydrogels in Drug Delivery
By newseditor
Posted 12 Apr
Lipids
By newseditor
Posted 31 Dec
Cell biology of carbohydrat…
By newseditor
Posted 29 Nov
RNA interference (RNAi)
By newseditor
Posted 23 Oct
RNA structure and functions
By newseditor
Posted 19 Oct
Posters
A chemical biology/modular…
By newseditor
Posted 22 Aug
Single-molecule covalent ma…
By newseditor
Posted 04 Jul
ASCO-2020-HEALTH SERVICES R…
By newseditor
Posted 23 Mar
ASCO-2020-HEAD AND NECK CANCER
By newseditor
Posted 23 Mar
ASCO-2020-GENITOURINARY CAN…
By newseditor
Posted 23 Mar