Our thoughts, feelings, and movements are controlled by billions of neurons talking to each other at trillions of specialized communication points called synapses. In an in-depth study of neurons grown in laboratory petri dishes, the researchers discovered how the chattiest of some synapses find the energy to support intense conversations thought to underlie learning and memory. Their results, published in Nature Metabolism, suggest that a series of chemical reactions control a feedback loop that senses the need for more energy and replenishes it by recruiting cellular powerplants, called mitochondria, to the synapses.
The team studied synapses that use the neurotransmitter glutamate to communicate. Communication happens when a packet of glutamate is released from presynaptic boutons which are tiny protrusions that stick out, like beads on a string, of long, wiry parts of neurons called axons. Previously, the team showed that synaptic communication is an energy-demanding process and that mitochondria traveling along axons can control signals sent by boutons. Boutons that had mitochondria sent stronger and more consistent signals than those that were missing powerplants. The difference was due to higher energy levels produced by the mitochondria in the form of ATP.
In this study, the team investigated what happens when boutons undergo intense communication thought to underlie learning and memory. They found that this type of signaling quickly dropped energy levels at boutons. These changes triggered a series of chemical reactions controlled by an energy sensor called AMP-activated protein kinases (AMPK) that ultimately led to the rapid recruitment of mitochondria to the boutons.
Genetically blocking or chemically interfering with this feedback loop prevented the delivery of mitochondria to boutons and lowered energy levels. This, in turn, reduced synaptic responses during intense communication more than seen in control cells and slowed the recovery of the responses after the bursts ended.
The researchers concluded that this feedback loop may normally play a critical role in providing the energy needed to sustain synaptic communication throughout a healthy nervous system. For example, they cite studies which implied that problems with this system may occur in some cases of Alzheimer's disease and other neurological disorders.
https://www.ninds.nih.gov/News-Events/News-and-Press-Releases/Press-Releases/NIH-scientists-reveal-how-brain-may-fuel-intense
https://www.nature.com/articles/s42255-020-00289-0
https://www.eurekalert.org/pub_releases/2020-10/nion-nsr100520.php
Mitochondria fuel intense neural communication
- 1,465 views
- Added
Edited
Latest News
Gut bacteria may eliminate pathogens by competing for energy resources
How deep brain stimulation treats Parkinson's disease symptoms
Plasma membrane phospholipid plays a key role in epithelial cell adhesion
COVID-19, MIS-C and Kawasaki disease share same immune response
Improved cognition and mood by inducing neurogenesis via optogenetic stimulation of the brain
Other Top Stories
Cellular clock regulating human spine development
UV exposure causes estrogen mediated DNA damage and vision loss mostly in females
Reactivating neurogenesis improves learning and memory in old mice
Universal experiences associated with music
New imaging system and artificial intelligence algorithm accurately identify brain tumors
Protocols
Integrating neuroimaging and gene expression data using the imaging transcriptomics toolbox
Antibody structure prediction using interpretable deep learning
A semi-automated workflow for brain Slice Histology Alignment, Registration, and Cell Quantificat…
NanoDam identifies Homeobrain (ARX) and Scarecrow (NKX2.1) as conserved temporal factors in the D…
Spatiotemporal transcriptomic atlas of mouse organogenesis using DNA nanoball-patterned arrays
Publications
FMRP regulates GABAA receptor channel activity to control signal integration in hippocampal granu…
Host cells subdivide nutrient niches into discrete biogeographical microhabitats for gut microbes
Intestinal epithelial cell metabolism at the interface of microbial dysbiosis and tissue injury
Maturation of beta cells: lessons from in vivo and in vitro models
Plasma membrane phosphatidylinositol (4,5)-bisphosphate is critical for determination of epitheli…
Presentations
Hydrogels in Drug Delivery
Lipids
Cell biology of carbohydrate metabolism
RNA interference (RNAi)
RNA structure and functions
Posters
ASCO-2020-HEALTH SERVICES RESEARCH AND QUALITY IMPROVEMENT
ASCO-2020-HEAD AND NECK CANCER
ASCO-2020-GENITOURINARY CANCER–KIDNEY AND BLADDER
ASCO-2020-GENITOURINARY CANCER–PROSTATE, TESTICULAR, AND PENILE
ASCO-2020-GYNECOLOGIC CANCER