Certain cytokines but also intracellular pathogens, such as viruses and some bacteria, activate the transcription factor NF-κB, which regulates the expression of various genes.
“Depending on the stimulus and the cell type, NF-κB activation results in protection from cell death and increased synthesis of proteins required for the elimination of bacteria or viruses,” explains the author.
However, upon excessive and prolonged activation, this basically protective pathway can cause chronic inflammation. “Hence, a fine-tuned regulation of these signalling processes is of great medical relevance, in order to prevent pathophysiological conditions caused by either inefficient or overshooting NF-κB activation.”
The new study has revealed that mitochondria play a crucial role in the regulation of the NF-κB signalling pathway. Within minutes after pathway activation, a signalling platform assembles at the outer mitochondrial membrane, resulting in the activation of NF-κB.
“This allows signal amplification, based on the large surface of mitochondria,” says the author. “Moreover, mitochondria have another capacity that qualifies them as organelles for signal transduction: they are mobile and can dock onto motor proteins in the cell.”
The research team observed that mitochondria escort the activated transcription factor NF-κB to the nuclear membrane, thus facilitating the translocation of NF-κB into the nucleus.
However, mitochondria are not only involved in the efficient activation of the NF-κB signalling pathway; they also contribute to the deactivation and thus regulation of the signal. This is accomplished by an enzyme located at the outer mitochondrial membrane, which counteracts ubiquitination, a posttranslational modification required for NF-κB activation.
The authors show that TNF treatment induces the recruitment of HOIP, the catalytic component of the linear ubiquitin chain assembly complex (LUBAC), and its substrate NEMO to the outer mitochondrial membrane, where M1- and K63-linked ubiquitin chains are generated. NF-κB is locally activated and transported to the nucleus by mitochondria, leading to an increase in mitochondria-nucleus contact sites in a HOIP-dependent manner.
Two genes causally linked to Parkinson's disease are involved in the mitochondrial regulation of the NF-κB signalling pathway: PINK1 and Parkin.
“Our findings explain why mutations resulting in a loss of PINK1 or Parkin function promote neuronal cell death under stress conditions,” points out the author.
Remarkably, our findings show that Parkinson’s disease patients with mutations in the PINK1 or Parkin gene show an increased vulnerability to various infections caused by intracellular pathogens. Thus, our study also helps to gain a better understanding of the interfaces between the nervous and immune system.”
https://www.embopress.org/doi/full/10.15252/embj.2022112006
http://sciencemission.com/site/index.php?page=news&type=view&id=publications%2Flubac-assembles-a&filter=22
Mitochondria transmit signals in the immune and nervous systems
- 688 views
- Added
Latest News
Propionic acid protects ner…
By newseditor
Posted 28 Jan
How cells prevent harmful e…
By newseditor
Posted 28 Jan
Structured cerebellar conne…
By newseditor
Posted 28 Jan
Origins of pleasurable touc…
By newseditor
Posted 25 Jan
Unknown way cells protect t…
By newseditor
Posted 25 Jan
Other Top Stories
Genes associated with heavy drinking and alcoholism identified!
Read more
No major epigenetic differences from space travel!
Read more
How tumor repressor protects against neural tube defects
Read more
A rare genetic metabolic disorder identified!
Read more
Myelination deficits implicated in Williams syndrome mediated hyper…
Read more
Protocols
Machine learning prediction…
By newseditor
Posted 09 Jan
Differentiating PC12 cells…
By newseditor
Posted 09 Jan
Ultrasensitive sensors reve…
By newseditor
Posted 05 Jan
In vitro-derived medium spi…
By newseditor
Posted 04 Jan
Molecular and spatial signa…
By newseditor
Posted 30 Dec
Publications
Brainstem networks construc…
By newseditor
Posted 28 Jan
The role of platelets in im…
By newseditor
Posted 28 Jan
Invariant inhibition to cal…
By newseditor
Posted 27 Jan
Birdsong neuroscience and t…
By newseditor
Posted 27 Jan
Touch neurons underlying do…
By newseditor
Posted 25 Jan
Presentations
Hydrogels in Drug Delivery
By newseditor
Posted 12 Apr
Lipids
By newseditor
Posted 31 Dec
Cell biology of carbohydrat…
By newseditor
Posted 29 Nov
RNA interference (RNAi)
By newseditor
Posted 23 Oct
RNA structure and functions
By newseditor
Posted 19 Oct
Posters
ASCO-2020-HEALTH SERVICES R…
By newseditor
Posted 23 Mar
ASCO-2020-HEAD AND NECK CANCER
By newseditor
Posted 23 Mar
ASCO-2020-GENITOURINARY CAN…
By newseditor
Posted 23 Mar
ASCO-2020-GENITOURINARY CAN…
By newseditor
Posted 10 Mar
ASCO-2020-GYNECOLOGIC CANCER
By newseditor
Posted 10 Mar