The Hedgehog signaling pathway transmits information to embryonic cells. Insufficient signaling during development leads to birth defects, while unrestrained signaling occurs in many cancers, such as basal cell carcinoma, brain cancer, breast cancer, and prostate cancer.
Cryo-EM microscopy technology revealed the molecular mechanism of Hedgehog signaling. Having a clearer view of the structure could help pharmaceutical companies develop drugs that target Hedgehog signaling.
In a study published in Science, researchers used advanced microscopes to determine at atomic resolution the structure of a molecular complex implicated in birth defects and several cancers.
The researchers, using cryo-electron microscopy (cryo-EM) technology, showed that two Patched-1 (PTCH1) molecules simultaneously engage a single Hedgehog (HH) molecule, but at two distinct sites. This unique 2-to-1 ratio PTCH1-HH complex is required for efficient Hedgehog signaling in cells.
Authors show that 3.5-Å resolution cryo-EM structure of native Sonic Hedgehog (SHH-N) in complex with PTCH1 at a physiological calcium concentration. Functional assays using PTCH1 or SHH-N mutants that disrupt the individual interfaces illustrate that simultaneous engagement of both interfaces is required for efficient signaling in cells.
Cryo-EM uses enormous microscopes equipped with robotics to determine the structure of molecular samples that are frozen at temperatures so low that ice crystals cannot form.
In another paper published in Nature last month, the group reported a cryo-EM structure of the 1-to-1 PTCH1-HH complex. Their biochemical assays indicated that HH binding to one PTCH1 molecule may not be sufficient for full activity. HH may need to recruit either a different protein or another PTCH1 molecule, the group lead said.
"In the current Science paper, we report a 2-to-1 PTCH1-HH complex in which one Hedgehog molecule binds to two of its receptors (PTCH1) at two different spots. We used our cell biology assay to verify that this 2-to-1 complex is indeed the signaling generator for Hedgehog signaling. Combined with the earlier study published in Nature, we hope our new work will provide additional insights for physicians and scientists in this field," the lead author explained.
https://www.utsouthwestern.edu/newsroom/articles/year-2018/cell-signaling.html
https://www.nature.com/articles/s41586-018-0308-7
http://science.sciencemag.org/content/early/2018/08/22/science.aas8843
New understanding on cell signaling complex
- 1,385 views
- Added
Edited
Latest News
Mosquitoes have neuronal fail-safes to make sure they can always smell humans
Detecting gut microbes that activate immune cells
Shell microelectrode arrays (MEAs) for brain organoids
Why heat makes us sleepy
Nasal spray peptide can reduce seizure activity, protect neurons in Alzheimer's
Other Top Stories
A transcription factor involved in renal tubule epithelial regeneration in mice identified
Autism-linked protein lays groundwork for healthy brain
Mechanism for making blood cells
Understanding neurogenesis in the developing mouse brain
Role of mitochondria in early embryo development
Protocols
Simultaneous recording of neuronal and vascular activity in the rodent brain using fiber- photom…
VDJdb in the pandemic era: a compendium of T cell receptors specifc for SARS-CoV-2
A scalable organoid model of human autosomal dominant polycystic kidney disease for disease mecha…
An improved organotypic cell culture system to study tissue-resident macrophages ex vivo
Protocol for spike-triggered closed-loop auditory stimulation during sleep in patients with epilepsy
Publications
Non-canonical odor coding in the mosquito
LY3437943, a novel triple glucagon, GIP, and GLP-1 receptor agonist for glycemic control and weig…
Calcium homeostasis and cancer: insights from endoplasmic reticulum-centered organelle communicat…
Systemic inflammation after stroke: implications for post-stroke comorbidities
Systemic IgG repertoire as a biomarker for translocating gut microbiota members
Presentations
Hydrogels in Drug Delivery
Lipids
Cell biology of carbohydrate metabolism
RNA interference (RNAi)
RNA structure and functions
Posters
ASCO-2020-HEALTH SERVICES RESEARCH AND QUALITY IMPROVEMENT
ASCO-2020-HEAD AND NECK CANCER
ASCO-2020-GENITOURINARY CANCER–KIDNEY AND BLADDER
ASCO-2020-GENITOURINARY CANCER–PROSTATE, TESTICULAR, AND PENILE
ASCO-2020-GYNECOLOGIC CANCER