Genome analysis can provide information on genes and their location on a strand of DNA, but such analysis reveals little about their spatial location in relation to one another within chromosomes -- the highly complex, three-dimensional structures that hold genetic information.
Chromosomes resemble a fuzzy "X" in microscopy images and can carry thousands of genes. They are formed when DNA winds around proteins -- called histones -- which are further folded into complexes called chromatin, which make up individual chromosomes.
Knowing which genes are located in spatial proximity within the chromatin is important because genes that are near each other generally work together.
Now, researchers report on a computational technique that uses heat map data to reverse engineer highly detailed models of chromosomes. Through this work, the researchers have uncovered new information about the close spatial relationships that chromatin folding creates between genes that can be highly distant from one another along DNA strands.
Their findings are published in the journal Nature Communications.
"Folding of the chromatin brings genes that are far away from each other into close proximity. If we know that certain groups of genes are spatial neighbors because of this folding, that tells us they most likely work together to drive processes such as the development of immunity, or even more fundamental processes like development or cell differentiation," said a corresponding author on the paper. "This is important for better understanding these processes or development of new therapeutics to prevent or treat cancer and other diseases."
The authors developed a way to reverse engineer the complex structures of individual chromosomes using information from a process called Hi-C. Hi-C generates heat maps based on probabilities reflecting which genes are most likely to be spatially close to one another. These heat maps can provide approximate three-dimensional information on how chromosomes are organized, but because they are based on genetic material from multiple cells, the maps represent average likelihoods of proximity between genes, not exact locations.
The authors looked at Hi-C heat maps of chromosomes from cells of fruit fly embryos, which have only eight chromosomes. They used these heat maps together with new advanced computational methods to generate extremely detailed three-dimensional maps of the chromosomes of individual cells.
"For the first time, we are able to produce single-cell models that accurately represent genetic spatial relationships within chromosomes," the author said. "With these models, we can uncover rich biological patterns and answer basic biological questions about three-dimensional structural changes chromosomes undergo to cause stem cells to develop into different tissues, and how malfunctions in these processes lead to diseases such as cancer."
https://today.uic.edu/reverse-engineering-3d-chromosome-models-from-individual-cells
https://www.nature.com/articles/s41467-020-20490-9
http://sciencemission.com/site/index.php?page=news&type=view&id=publications%2Fhigh-resolution-single&filter=22
Reverse engineering 3D chromosome models for individual cells
- 381 views
- Added
Edited
Latest News
New signaling pathway in neurons
Mother's diet boosts immune systems of premature infants
Exercise generates immune cells in bone
Stopping lobular breast cancer!
Gut health and depression genetically entwined
Other Top Stories
Commonly used drugs have extensive impact on gut bacteria
A potential drug target against a large family of parasites is identified
Human antibody prevents malaria in mice
Antibiotic use increases risk of severe viral disease in mice
Why iron can worsen malaria infection
Protocols
Dual-Angle Protocol for Doppler Optical Coherence Tomography to Improve Retinal Blood Flow Measur…
Detection of protein SUMOylation in vivo
In vivo analysis of protein sumoylation induced by a viral protein: Detection of HCMV pp71-induce…
Determination of SUMOylation sites
miR-Selection 3'UTR Target Selection Kit
Publications
Interaction of 7SK with the Smn complex modulates snRNP production
Maternal aryl hydrocarbon receptor activation protects newborns against necrotizing enterocolitis
Time course of phosphorylated-tau181 in blood across the Alzheimer's disease spectrum
Neurobiology of bipolar disorders: a review of genetic components, signaling pathways, biochemica…
Glyphosate-Modulated Biosynthesis Driving Plant Defense and Species Interactions
Presentations
Bioplar Disorder
G-Protein-Coupled Receptors
Mood Disorders
Mitochondrial DNA
Brain‐Gut‐Axis
Posters
ASCO-2020-CENTRAL NERVOUS SYSTEM TUMORS
ASCO-2020-DEVELOPMENTAL THERAPEUTICS–IMMUNOTHERAPY
ASCO-2020-DEVELOPMENTAL THERAPEUTICS–MOLECULARLY TARGETED AGENTS AND TUMOR BIOLOGY
ASCO-2020-CANCER PREVENTION, RISK REDUCTION, AND GENETICS
ASCO-2020-BREAST CANCER–METASTATIC