They are lightweight, almost invisible, highly extensible and strong, and of course biodegradable: the threads spiders use to build their webs. In fact, spider silk belongs to the toughest fibres in nature. Based on its low weight it even supersedes high-tech threads like Kevlar or Carbon. Its unique combination of strength and extensibility renders it in particular attractive for industry. Whether in aviation industry, textile industry, or medicine - potential applications of this magnificent material are manifold.
Since long time material scientists continue to try reproducing the fibre in the laboratory, but with limited success. Today, it is possible to manufacture artificial spider silk of similar properties as the prototype, but the molecular-level structural details responsible for material properties await to be disclosed. Now, scientists delivered new insights. The results are published in the scientific journal Nature Communications.
"The silk fibres consist of protein building blocks, so-called spidroins, which are assembled by spiders within their spinning gland", explains the author. The terminal ends of building blocks take special roles in this process. The two ends of a spidroin are terminated by an N- and a C-terminal domain.
The domains at both ends connect protein building blocks. In the present study, researchers took a close look at the C-terminal domain. The C-terminal domain connects two spidroins through formation of an intertwined structure that resembles a molecular clamp. "We observed that the clamp self-assembles in two discrete steps. While the first step comprises association of two chain ends, the second step involves the folding of labile helices in the periphery of the domain," that author said.
This two-step process of self-assembly was previously unknown and may contribute to extensibility of spider silk. It is known that stretching of spider silk is associated with unfolding of helix. Previous work, however, traced extensibility back to the unfolding of helices in the central segment of spidroins. "We propose that the C-terminal domain might also act as module that contributes to extensibility" explains the author.
In their study the researchers investigated protein building blocks of the nursery web spider Euprosthenops australis. They used genetic engineering to exchange individual moieties of building blocks and modified the protein chemically using fluorescent dyes. Finally, the interaction of light with soluble proteins disclosed that the domain assembles in two discrete steps.
https://www.uni-wuerzburg.de/en/news-and-events/news/detail/news/molecular-insights-into-spider-silk/
https://www.nature.com/articles/s41467-018-07227-5
Latest News
A new pathway involved in a…
By newseditor
Posted 03 Oct
Antidepressant shows promis…
By newseditor
Posted 03 Oct
Ebola virus nucleocapsid as…
By newseditor
Posted 03 Oct
A way to modulate scarring…
By newseditor
Posted 03 Oct
New blood test could be an…
By newseditor
Posted 03 Oct
Other Top Stories
Link between fungal microbes in infant gut and body weight
Read more
Inhibition of cellular RNA methyltransferase abrogates influenza vi…
Read more
Microbiota from mothers regulates lung immunity in newborns
Read more
Mosquito cells that may help the insects choose tastiest humans
Read more
How lung cells protect themselves against RNA viral infection
Read more
Protocols
Droplet-based functional CR…
By newseditor
Posted 03 Oct
Multi-peptide characterizat…
By newseditor
Posted 24 Sep
Nanoplasmonic aptasensor fo…
By newseditor
Posted 20 Sep
Modeling the atrioventricul…
By newseditor
Posted 11 Sep
Modeling the atrioventricul…
By newseditor
Posted 11 Sep
Publications
High-throughput identificat…
By newseditor
Posted 03 Oct
Intracellular Ebola virus n…
By newseditor
Posted 03 Oct
Host-microbe serotonin meta…
By newseditor
Posted 03 Oct
Biliverdin Reductase-A inte…
By newseditor
Posted 03 Oct
Axon guidance during mouse…
By newseditor
Posted 03 Oct
Presentations
Hydrogels in Drug Delivery
By newseditor
Posted 12 Apr
Lipids
By newseditor
Posted 31 Dec
Cell biology of carbohydrat…
By newseditor
Posted 29 Nov
RNA interference (RNAi)
By newseditor
Posted 23 Oct
RNA structure and functions
By newseditor
Posted 19 Oct
Posters
A chemical biology/modular…
By newseditor
Posted 22 Aug
Single-molecule covalent ma…
By newseditor
Posted 04 Jul
ASCO-2020-HEALTH SERVICES R…
By newseditor
Posted 23 Mar
ASCO-2020-HEAD AND NECK CANCER
By newseditor
Posted 23 Mar
ASCO-2020-GENITOURINARY CAN…
By newseditor
Posted 23 Mar