MicroRNAs and messenger RNA (mRNA) fragments can move between mammalian cells by diffusing through extracellular fluids in membrane-enclosed vesicles. Using single-molecule fluorescent in situ hybridization and live imaging, researchers observed the intercellular transfer of full-length mRNA molecules between animal cells grown together in laboratory dishes through an alternate mechanism.
Rather than diffusing through extracellular fluids in vesicles, the mRNA molecules, including those for mouse actin and human BRCA1 and HER2, were transported through tunnel-like protrusions from the cell surface called membrane nanotubes, which are around 0.5 μm wide and up to 200 μm long. RNA transport through membrane nanotubes appears to be mediated by actin filaments and is dependent on direct physical contact between donor and acceptor cells.
Examples of mRNAs that undergo transfer include those encoding GFP, mouse β-actin, and human Cyclin D1, BRCA1, MT2A, and HER2. Authors show that intercellular mRNA transfer occurs in all coculture models tested (e.g., between primary cells, immortalized cells, and in cocultures of immortalized human and murine cells).
Further, gene expression changes and environmental stress appear to influence intercellular mRNA transfer. Because proteins synthesized from transferred mRNA molecules can influence the physiology of acceptor cells and because membrane nanotubes have been observed in tumors derived from cancer patients, the authors speculate that intercellular mRNA transport could alter tumor microenvironments and trigger or abet carcinogenesis.
According to the authors, membrane nanotube-mediated RNA transfer might also influence other biological processes, such as embryonic development and tissue maintenance and regeneration.
http://www.pnas.org/content/early/2017/10/23/1706365114
Latest News
Restricted diet and glucose uptake in the brain lead to longer life
Pixelated chemical displays offer versatile liquid handling
Cells mechanical forces linked to immune system
Characterization of a new Leishmania major strain for use in a controlled human infection model
Stress granules do not suppress mRNA translation!
Other Top Stories
Astrocytes regulate inhibitory synapses in brain
Manipulating mitochondria by CRISPR to convert glia to neuron
Salivary glands differ in protein production
Anthraquinone synthesis gene in plants identified!
Function of autism spectrum disorder genes investigated using Perturb-Seq technology
Protocols
Dual-Angle Protocol for Doppler Optical Coherence Tomography to Improve Retinal Blood Flow Measur…
Detection of protein SUMOylation in vivo
In vivo analysis of protein sumoylation induced by a viral protein: Detection of HCMV pp71-induce…
Determination of SUMOylation sites
miR-Selection 3'UTR Target Selection Kit
Publications
DeepTracer for fast de novo cryo-EM protein structure modeling and special studies on CoV-related…
Circulating mitochondrial DNA is an early indicator of severe illness and mortality from COVID-19
Neural correlates of shared sensory symptoms in autism and attention-deficit/hyperactivity disorder
Increasing neuronal glucose uptake attenuates brain aging and promotes life span under dietary re…
Graphene: An Antibacterial Agent or a Promoter of Bacterial Proliferation?
Presentations
Homeostasis
PLANT MITOCHONDRIAL BIOLOGY
Photosynthesis
Endocrine Disorders
THE PITUITARY GLAND
Posters
ACMT 2020 Annual Scientific Meeting Abstracts - New York, NY
Abstracts from the 2020 Annual Scientific Meeting of the British and Irish Hypertension Society (…
ACNP 58th Annual Meeting: Poster Session III
ACNP 58th Annual Meeting: Poster Session II
ACNP 58th Annual Meeting: Poster Session I