Parkinson's disease is one of a number of neurodegenerative diseases caused when naturally occurring proteins fold into the wrong shape and stick together with other proteins, eventually forming thin filament-like structures called amyloid fibrils. These amyloid deposits of aggregated alpha-synuclein, also known as Lewy bodies, are the hallmark of Parkinson's disease.
Researchers have used a non-invasive method of observing how the process leading to Parkinson's disease takes place at the nanoscale, and identified the point in the process at which proteins in the brain become toxic, eventually leading to the death of brain cells.
The results suggest that the same protein can either cause, or protect against, the toxic effects that lead to the death of brain cells, depending on the specific structural form it takes, and that toxic effects take hold when there is an imbalance of the level of protein in its natural form in a cell. The study is published in the journal Proceedings of the National Academy of Sciences.
Using super-resolution microscopy, researchers from the University of Cambridge were able to observe the behaviour of different types of alpha-synuclein, a protein closely associated with Parkinson's disease, in order to find how it affects neurons, and at what point it becomes toxic.
Researchers have used optical 'super-resolution' techniques to look into live neurons without damaging the tissue. They used different forms of alpha-synuclein and observed their behavior in neurons from rats. They were then able to correlate what they saw with the amount of toxicity that was present.
They found that when they added alpha-synuclein fibrils to the neurons, they interacted with alpha-synuclein protein that was already in the cell, and no toxic effects were present. But when they added a different, soluble form of alpha-synuclein, it didn't interact with the protein that was already present in the neuron and interestingly this was where we saw toxic effects and cells began to die. So somehow, when the soluble protein was added, it created this toxic effect. The damage appears to be done before visible fibrils are even formed."
The researchers then observed that by adding the soluble form of alpha-synuclein together with amyloid fibrils, the toxic effect of the former could be overcome. It appeared that the amyloid fibrils acted like magnets for the soluble protein and mopped up the soluble protein pool, shielding against the associated toxic effects.
"These findings change the way we look at the disease, because the damage to the neuron can happen when there is simply extra soluble protein present in the cell - it's the excess amount of this protein that appears to cause the toxic effects that lead to the death of brain cells," said the author. Extra soluble protein can be caused by genetic factors or ageing, although there is some evidence that it could also be caused by trauma to the head.
Latest News
Worm neural signal propagat…
By newseditor
Posted 28 Nov
Regenerating muscle by dire…
By newseditor
Posted 28 Nov
Brain and heart connections…
By newseditor
Posted 27 Nov
Inhibition of polyamine bio…
By newseditor
Posted 27 Nov
Monomeric α-synuclein activ…
By newseditor
Posted 27 Nov
Other Top Stories
Link between death of tumor-support cells and cancer metastasis
Read more
Brain cancer model developed using stem cells
Read more
Subtypes of rare childhood brain tumor identified
Read more
Mitochondrial fatty acid oxidation in the regulation of cancer meta…
Read more
Linking stem cells to aggressive prostate cancer
Read more
Protocols
Biology-guided deep learnin…
By newseditor
Posted 26 Nov
Accurate prediction of prot…
By newseditor
Posted 25 Nov
The Brainbox–a tool to faci…
By newseditor
Posted 24 Nov
Real-time analysis of the c…
By newseditor
Posted 22 Nov
A flexible and versatile sy…
By newseditor
Posted 18 Nov
Publications
Neural signal propagation a…
By newseditor
Posted 28 Nov
Exercised breastmilk: a kic…
By newseditor
Posted 28 Nov
Phase I clinical trial of i…
By newseditor
Posted 28 Nov
The endolysosomal pathway a…
By newseditor
Posted 28 Nov
Brain metastasis-associated…
By newseditor
Posted 27 Nov
Presentations
Hydrogels in Drug Delivery
By newseditor
Posted 12 Apr
Lipids
By newseditor
Posted 31 Dec
Cell biology of carbohydrat…
By newseditor
Posted 29 Nov
RNA interference (RNAi)
By newseditor
Posted 23 Oct
RNA structure and functions
By newseditor
Posted 19 Oct
Posters
A chemical biology/modular…
By newseditor
Posted 22 Aug
Single-molecule covalent ma…
By newseditor
Posted 04 Jul
ASCO-2020-HEALTH SERVICES R…
By newseditor
Posted 23 Mar
ASCO-2020-HEAD AND NECK CANCER
By newseditor
Posted 23 Mar
ASCO-2020-GENITOURINARY CAN…
By newseditor
Posted 23 Mar