Error-correcting mechanisms are very important for cells, because with all the cellular activity constantly going on, malfunctions arise all the time. But when it comes to killing cancer cells, it is in the cells’ best interest to induce errors. Radiotherapy and chemotherapy can cause cellular defects by breaking the DNA of the cells. However, some tumor cells have an exceptionally efficient DNA repair machinery that allows them to evade cancer treatment.
In a paper published in Cell Reports, the researchers have now revealed the workings of one of these extraordinary repair systems: a molecular staple that has been shown in action for the first time using a new nanotechnology technique.
A few years ago, a team discovered that about half of patients with hepatocellular carcinoma (the most common type of liver cancer) produce an RNA molecule called NIHCOLE, which is found mainly in the most aggressive tumors and is associated with a poor prognosis. The authors concluded that NIHCOLE is very effective at helping repair broken DNA, which is why radiotherapy is less effective in tumors where it is present. By eliminating NIHCOLE, cancer cells treated with radiotherapy die more easily.
However, the molecular mechanism by which NIHCOLE facilitates the repair of DNA breaks was not known. The paper just published in Cell Reports explains this: NIHCOLE forms a bridge that binds the broken DNA fragments together.
"NIHCOLE interacts simultaneously with proteins that recognize the two ends of a fragmented DNA, as if stapling them together," explain the authors.
Understanding this mechanism may help in the development of strategies to combat liver cancers with the worst prognosis. "The use of NIHCOLE inhibitor drugs may represent a new therapy for the most common form of liver cancer," the researchers say.
To understand how NIHCOLE works, the group has used magnetic tweezers, a nanotechnology technique that allows the physical properties of individual molecules to be studied.
Researchers have designed a DNA molecule that mimics broken DNA, allowing them to detect the junction between the two fragmented ends. First, they attach a tiny magnetic bead, on the scale of a thousandth of a millimetre, to one end of the DNA, and then use magnetic nano-tweezers to pull on that end. The length of the stretched DNA indicates whether it is a reconstituted DNA molecule, in which the broken ends of the DNA have been joined together, or whether it is still broken.
For the authors of the Cell Reports paper, these data show that NIHCOLE "confers advantages on tumor cells by helping them to repair DNA breaks, thereby sustaining the malignant proliferation of cancer cells despite the accumulation of DNA damage resulting from the stress of cell division itself."
NIHCOLE is not a protein synthesized by a gene, but an RNA molecule. It is part of what biologists dubbed junk DNA two decades ago when the human genome was being sequenced. At the time, they mistakenly believed that this DNA was useless.
The author explains: "One of the central dogmas of biology is that the information contained in each gene, in DNA, is translated into proteins. So scientists were stunned when they discovered that only 2% of our DNA contained genes; what was the rest of our genome for? It is unthinkable that 98% of the genome is junk, useless DNA. In the last decade it has been shown that part of this dark genome produces very long RNA molecules, some of which have a prevalent function in cancer."
NIHCOLE is one of these long RNA molecules, the existence and function of which have only recently been discovered to such an extent that biologists are still amazed. It is also surprising that only a small piece of NIHCOLE is required for it to act as a molecular staple.
"This would allow the development of drugs that block or distort this structure, and thus improve the efficacy of radiotherapy or chemotherapy in cancer patients," say the authors of the paper.
https://www.cell.com/cell-reports/fulltext/S2211-1247(22)01816-2
http://sciencemission.com/site/index.php?page=news&type=view&id=publications%2Faplf-and-long-non&filter=22
A new DNA repair mechanism that hinders cancer treatment
- 871 views
- Added
Latest News
Citrullination is a key pla…
By newseditor
Posted 14 Sep
Senolytic therapy clinical…
By newseditor
Posted 14 Sep
Genetic tools probe microbi…
By newseditor
Posted 13 Sep
A secret passage for mutant…
By newseditor
Posted 11 Sep
Specialized T cells in the…
By newseditor
Posted 10 Sep
Other Top Stories
Arteries respond in opposite ways for males and females
Read more
A central master driver of psychosocial stress responses found!
Read more
Neurotransmitter switching during exercise boosts motor skill learn…
Read more
Retinal neurons release GABA to control light sensitivity and circa…
Read more
Inhibiting thrombin protects against dangerous infant digestive dis…
Read more
Protocols
Genetic manipulation of Pat…
By newseditor
Posted 13 Sep
Single-nucleus RNA sequenci…
By newseditor
Posted 08 Sep
Engineering RNA export for…
By newseditor
Posted 25 Aug
ATP production from electri…
By newseditor
Posted 21 Aug
Labeling PIEZO2 activity in…
By newseditor
Posted 20 Aug
Publications
Timing of lifespan influenc…
By newseditor
Posted 16 Sep
Transformer-based biomarker…
By newseditor
Posted 16 Sep
Somatic variants of MAP3K3…
By newseditor
Posted 16 Sep
The NLRP3 inflammasome and…
By newseditor
Posted 15 Sep
Targeting the metabolism of…
By newseditor
Posted 15 Sep
Presentations
Hydrogels in Drug Delivery
By newseditor
Posted 12 Apr
Lipids
By newseditor
Posted 31 Dec
Cell biology of carbohydrat…
By newseditor
Posted 29 Nov
RNA interference (RNAi)
By newseditor
Posted 23 Oct
RNA structure and functions
By newseditor
Posted 19 Oct
Posters
A chemical biology/modular…
By newseditor
Posted 22 Aug
Single-molecule covalent ma…
By newseditor
Posted 04 Jul
ASCO-2020-HEALTH SERVICES R…
By newseditor
Posted 23 Mar
ASCO-2020-HEAD AND NECK CANCER
By newseditor
Posted 23 Mar
ASCO-2020-GENITOURINARY CAN…
By newseditor
Posted 23 Mar