Error-correcting mechanisms are very important for cells, because with all the cellular activity constantly going on, malfunctions arise all the time. But when it comes to killing cancer cells, it is in the cells’ best interest to induce errors. Radiotherapy and chemotherapy can cause cellular defects by breaking the DNA of the cells. However, some tumor cells have an exceptionally efficient DNA repair machinery that allows them to evade cancer treatment.
In a paper published in Cell Reports, the researchers have now revealed the workings of one of these extraordinary repair systems: a molecular staple that has been shown in action for the first time using a new nanotechnology technique.
A few years ago, a team discovered that about half of patients with hepatocellular carcinoma (the most common type of liver cancer) produce an RNA molecule called NIHCOLE, which is found mainly in the most aggressive tumors and is associated with a poor prognosis. The authors concluded that NIHCOLE is very effective at helping repair broken DNA, which is why radiotherapy is less effective in tumors where it is present. By eliminating NIHCOLE, cancer cells treated with radiotherapy die more easily.
However, the molecular mechanism by which NIHCOLE facilitates the repair of DNA breaks was not known. The paper just published in Cell Reports explains this: NIHCOLE forms a bridge that binds the broken DNA fragments together.
"NIHCOLE interacts simultaneously with proteins that recognize the two ends of a fragmented DNA, as if stapling them together," explain the authors.
Understanding this mechanism may help in the development of strategies to combat liver cancers with the worst prognosis. "The use of NIHCOLE inhibitor drugs may represent a new therapy for the most common form of liver cancer," the researchers say.
To understand how NIHCOLE works, the group has used magnetic tweezers, a nanotechnology technique that allows the physical properties of individual molecules to be studied.
Researchers have designed a DNA molecule that mimics broken DNA, allowing them to detect the junction between the two fragmented ends. First, they attach a tiny magnetic bead, on the scale of a thousandth of a millimetre, to one end of the DNA, and then use magnetic nano-tweezers to pull on that end. The length of the stretched DNA indicates whether it is a reconstituted DNA molecule, in which the broken ends of the DNA have been joined together, or whether it is still broken.
For the authors of the Cell Reports paper, these data show that NIHCOLE "confers advantages on tumor cells by helping them to repair DNA breaks, thereby sustaining the malignant proliferation of cancer cells despite the accumulation of DNA damage resulting from the stress of cell division itself."
NIHCOLE is not a protein synthesized by a gene, but an RNA molecule. It is part of what biologists dubbed junk DNA two decades ago when the human genome was being sequenced. At the time, they mistakenly believed that this DNA was useless.
The author explains: "One of the central dogmas of biology is that the information contained in each gene, in DNA, is translated into proteins. So scientists were stunned when they discovered that only 2% of our DNA contained genes; what was the rest of our genome for? It is unthinkable that 98% of the genome is junk, useless DNA. In the last decade it has been shown that part of this dark genome produces very long RNA molecules, some of which have a prevalent function in cancer."
NIHCOLE is one of these long RNA molecules, the existence and function of which have only recently been discovered to such an extent that biologists are still amazed. It is also surprising that only a small piece of NIHCOLE is required for it to act as a molecular staple.
"This would allow the development of drugs that block or distort this structure, and thus improve the efficacy of radiotherapy or chemotherapy in cancer patients," say the authors of the paper.
https://www.cell.com/cell-reports/fulltext/S2211-1247(22)01816-2
http://sciencemission.com/site/index.php?page=news&type=view&id=publications%2Faplf-and-long-non&filter=22
A new DNA repair mechanism that hinders cancer treatment
- 1,141 views
- Added
Latest News
Common brain network detect…
By newseditor
Posted 04 Oct
Mechanism behind autophagy…
By newseditor
Posted 04 Oct
Activation of parkin by a m…
By newseditor
Posted 04 Oct
A new pathway involved in a…
By newseditor
Posted 03 Oct
Antidepressant shows promis…
By newseditor
Posted 03 Oct
Other Top Stories
Light processing by retinal cells require only few G proteins
Read more
Breaking down pathological protein aggregates
Read more
Fast, efficient way to build amino acid chains
Read more
Synapse-boosting factors in young blood
Read more
New gene editor harnesses jumping genes for precise DNA integration
Read more
Protocols
Use of synthetic circular R…
By newseditor
Posted 06 Oct
The gut-brain axis in depre…
By newseditor
Posted 04 Oct
Droplet-based functional CR…
By newseditor
Posted 03 Oct
Multi-peptide characterizat…
By newseditor
Posted 24 Sep
Nanoplasmonic aptasensor fo…
By newseditor
Posted 20 Sep
Publications
Mutation in the mitochondri…
By newseditor
Posted 06 Oct
Hydrogen sulfide coordinate…
By newseditor
Posted 06 Oct
Catchers of folding gone aw…
By newseditor
Posted 05 Oct
Targeting conserved TIM3+VI…
By newseditor
Posted 05 Oct
The androgen receptor in me…
By newseditor
Posted 04 Oct
Presentations
Hydrogels in Drug Delivery
By newseditor
Posted 12 Apr
Lipids
By newseditor
Posted 31 Dec
Cell biology of carbohydrat…
By newseditor
Posted 29 Nov
RNA interference (RNAi)
By newseditor
Posted 23 Oct
RNA structure and functions
By newseditor
Posted 19 Oct
Posters
A chemical biology/modular…
By newseditor
Posted 22 Aug
Single-molecule covalent ma…
By newseditor
Posted 04 Jul
ASCO-2020-HEALTH SERVICES R…
By newseditor
Posted 23 Mar
ASCO-2020-HEAD AND NECK CANCER
By newseditor
Posted 23 Mar
ASCO-2020-GENITOURINARY CAN…
By newseditor
Posted 23 Mar