Breaching brain barriers using lymphatic system to attack tumors

Breaching brain barriers using lymphatic system to attack tumors


The brain is a sort of fortress, equipped with barriers designed to keep out dangerous pathogens. But protection comes at a cost: These barriers interfere with the immune system when faced with dire threats such glioblastoma, a deadly brain tumor for which there are few effective treatments.

The researchers have found a novel way to circumvent the brain's natural defenses when they're counterproductive by slipping immune system rescuers through the fortresses' drainage system, they report in the journal Nature.

"People had thought there was very little the immune system could do to combat brain tumors," said senior corresponding author. "There has been no way for glioblastoma patients to benefit from immunotherapy."

While the brain itself has no direct way for disposing of cellular waste, tiny vessels lining the interior of the skull collect tissue waste and dispose of it through the body's lymphatic system, which filters toxins and waste from the body. It is this disposal system that researchers exploited in the new study.

These vessels form shortly after birth, spurred in part by the gene known as vascular endothelial growth factor C, or VEGF-C.

The senior co-corresponding author of the paper, wondered whether VEGF-C might increase immune response if lymphatic drainage was increased. And lead author wanted to see if VEGF-C could specifically be used to increase the immune system's surveillance of glioblastoma tumors. Together, the team investigated whether introducing VEGF-C through this drainage system would specifically target brain tumors.

The team introduced VEGF C into the cerebrospinal fluid of mice with glioblastoma and observed an increased level of T cell response to tumors in the brain. Ectopic expression of vascular endothelial growth factor C (VEGF-C) promotes enhanced priming of CD8 T cells in the draining deep cervical lymph nodes, migration of CD8 T cells into the tumor, rapid clearance of the glioblastoma and a long-lasting antitumor memory response.

Furthermore, transfection of an mRNA construct that expresses VEGF-C works synergistically with checkpoint blockade therapy to eradicate existing glioblastoma and significantly extended survival of the mice. In other words, the introduction of VEGF-C, in conjunction with cancer immunotherapy drugs, was apparently sufficient to target brain tumors.

"These results are remarkable," the author said. "We would like to bring this treatment to glioblastoma patients. The prognosis with current therapies of surgery and chemotherapy is still so bleak."

https://news.yale.edu/2020/01/15/scientists-breach-brain-barriers-attack-tumors

https://www.nature.com/articles/s41586-019-1912-x

Edited

Rating

Unrated
Rating: