A recent analysis of 43,205 human tumors unveiled that 68% of solid tumors are aneuploid, that is to say, they have an altered number of chromosomes.
In recent years, scientists have attempted to clarify whether this aneuploidy contributes to tumor development or whether it is a co-lateral effect of the genomic instability of cancer cells, which increase the rate of mutations and the likelihood of cancer.
The research on aneuploidy and tumorigenesis has been performed using the wing primordia of the fruit fly Drosophila melanogaster as a model. This tissue is an epithelium organised into a single layer and that grows by 20 to 30,000 cells in a few days. Given these features, this tissue is an ideal system in which to generate genomic instability and to dissect the cell and molecular mechanisms that elicit aneuploid cells in a proliferating tissue.
The team of researchers observed that aneuploid cells first activate apoptosis (or programmed cell suicide). At the same time, in an attempt to counteract the imminent loss of cells, they send signals to neighbouring ones instructing them to divide and proliferate further to ensure the development of normal tissue -- in this case the fly wing. Next, they also activate a series of DNA repair signals and also anti-tumour protection in order to prevent further aneuploidy.
"We have described the cascade of cell and molecular processes, and repair defence and compensation mechanisms which, simultaneously or sequentially, are triggered in and by aneuploid cells," explains the first author of the study.
But what happens if aneuploid cells manage to survive? After preventing the cells from dying, the researchers observed that the proliferation signals derived from aneuploid cells, which previously served to maintain healthy tissue, now favored tumor development.
This study widens the Darwinian perspective of genomic stability in the development of cancer, "perhaps an incomplete view of the role of genomic stability in tumorigenesis" says the author. Such a perspective is based on a random increase in tumor-promoting genes and a loss of tumor-supressing genes, which ultimately favors the tumor cell.
"Somehow the aneuploidy derived from this genomic instability also causes metabolic stress, which in turn leads to the expression of a series of signals that can enhance growth and development".
Given that aneuploidy is common to most cancers, authors consider that searching for treatments directed exclusively at removing aneuploid cells may provide a good strategy to tackle them.
Latest News
A new cardiovascular risk f…
By newseditor
Posted 09 Sep
Your brain ages at differen…
By newseditor
Posted 09 Sep
A bacterial defense with po…
By newseditor
Posted 06 Sep
Type I interferon responses…
By newseditor
Posted 06 Sep
Cellular pathways to Alzhei…
By newseditor
Posted 06 Sep
Other Top Stories
Room temperature x-ray crystallography of COVID-19 main protease
Read more
Seizure identification and localization in real-time by artificial…
Read more
Preserving pancreatic tissue slice in culture for at least 10 days
Read more
Continuous monitoring for COVID-19 using wireless, soft, skin-inter…
Read more
Precise connectomic targeting of deep brain stimulation to treat ob…
Read more
Protocols
Clinical utility of a blood…
By newseditor
Posted 06 Sep
A glia-enriched stem cell 3…
By newseditor
Posted 01 Sep
Mouse models to investigate…
By newseditor
Posted 30 Aug
A brief guide to studying e…
By newseditor
Posted 28 Aug
Single-cell EpiChem jointly…
By newseditor
Posted 24 Aug
Publications
Unidirectional association…
By newseditor
Posted 09 Sep
Mechanisms of mechanotransd…
By newseditor
Posted 09 Sep
The crosstalk between metab…
By newseditor
Posted 09 Sep
Brain clocks capture divers…
By newseditor
Posted 09 Sep
Urinary tract infections: p…
By newseditor
Posted 09 Sep
Presentations
Hydrogels in Drug Delivery
By newseditor
Posted 12 Apr
Lipids
By newseditor
Posted 31 Dec
Cell biology of carbohydrat…
By newseditor
Posted 29 Nov
RNA interference (RNAi)
By newseditor
Posted 23 Oct
RNA structure and functions
By newseditor
Posted 19 Oct
Posters
A chemical biology/modular…
By newseditor
Posted 22 Aug
Single-molecule covalent ma…
By newseditor
Posted 04 Jul
ASCO-2020-HEALTH SERVICES R…
By newseditor
Posted 23 Mar
ASCO-2020-HEAD AND NECK CANCER
By newseditor
Posted 23 Mar
ASCO-2020-GENITOURINARY CAN…
By newseditor
Posted 23 Mar