A team of researchers has applied an unconventional approach that used bacteria to discover human proteins that can lead to DNA damage and promote cancer. Reported in the journal Cell, the study also proposes biological mechanisms by which these proteins can cause damage to DNA, opening possibilities for future cancer treatments.
"Our cells make protein carcinogens," said co-corresponding author. "Cancer is a disease of mutations. A normal cell that has accumulated several mutations in particular genes becomes likely to turn into a cancer cell."
Mutations that cause cancer can be the result of DNA damage. External factors such as tobacco smoke and sunlight can damage DNA, but most DNA damage seems to result from events that occur within cells and is mediated by cellular components, including proteins. Despite the importance of these events, they have not been studied extensively.
"One way proteins can cause DNA damage is by being overproduced, which is a relatively frequent cellular event," said the author. "In this study, we set out to uncover proteins that, when overproduced by the cell, cause damage to DNA in ways that can lead to cancer."
To uncover these DNA "damage-up" proteins, the researchers took an unconventional approach. They searched for proteins that promote DNA damage in human cells by looking at proteins that, when overproduced, would cause DNA damage in the bacterium E. coli.
"Although bacteria and people are different, their basic biological processes are similar, so with this approach we thought we might find common mechanisms of DNA damage that could be relevant to cancer," the author said.
The researchers genetically modified bacteria so they would fluoresce red when DNA was damaged. Then, they overexpressed each of the 4,000 genes present in E coli individually and determined which ones made bacteria glow red.
"We uncovered an extensive and varied network of proteins that, when overproduced, alter cells in ways that lead to DNA damage," the author said. "Some of these proteins are, as expected, involved in DNA processing or repair, but, surprisingly, most are not directly connected to DNA. For instance, some of the DNA damage-up proteins participate in the transport of molecules across the cell membrane."
When the researchers looked for human protein relatives of the DNA "damage-up" proteins they had found in bacteria, they identified 284. Interestingly, they determined that these human proteins are linked to cancer more often than random sets of proteins. In addition, the proteins' RNAs, an indicator of protein production, predicted mutagenesis in tumors and poor patient prognosis. When the researchers overproduced these proteins in human cells in the lab, half of the proteins triggered DNA damage and mutation.
"We showed that E. coli can help to identify DNA damage-up proteins and mechanisms of action in human cells quickly and inexpensively. Some of the proteins and their mechanisms were known to be involved in cancer, but many others were not suspected of being in the cancer-causing list," said another co-corresponding author.
https://www.bcm.edu/news/cancer/bacteria-help-discover-cancer-causing-protein
https://www.cell.com/cell/fulltext/S0092-8674(18)31622-2?_
Endogenous proteins can cause DNA damage and cancer
- 2,159 views
- Added
Edited
Latest News
Protein found in brain link…
By newseditor
Posted 09 Dec
Calcium acts as missing lin…
By newseditor
Posted 09 Dec
How repeated traumatic brai…
By newseditor
Posted 08 Dec
Metformin rescues neuronal…
By newseditor
Posted 08 Dec
Variants in the genome inte…
By newseditor
Posted 08 Dec
Other Top Stories
Respiration key to increase oxygen in the brain
Read more
Epigenetic control of desire to exercise!
Read more
Detecting autism before symptoms appear by genome testing the sibli…
Read more
Bone fracture healing requires nerve signaling pathway
Read more
Predicting a protein's behavior from its appearance
Read more
Protocols
Brain-wide circuit-specific…
By newseditor
Posted 05 Dec
Cheap, cost-effective, and…
By newseditor
Posted 03 Dec
Temporally multiplexed imag…
By newseditor
Posted 02 Dec
Efficient elimination of ME…
By newseditor
Posted 01 Dec
Personalized drug screening…
By newseditor
Posted 30 Nov
Publications
Extracellular calcium funct…
By newseditor
Posted 09 Dec
TAF15 amyloid filaments in…
By newseditor
Posted 09 Dec
Metformin rescues migratory…
By newseditor
Posted 08 Dec
Oral magnesium prevents ace…
By newseditor
Posted 08 Dec
GDF15 is a major determinan…
By newseditor
Posted 08 Dec
Presentations
Hydrogels in Drug Delivery
By newseditor
Posted 12 Apr
Lipids
By newseditor
Posted 31 Dec
Cell biology of carbohydrat…
By newseditor
Posted 29 Nov
RNA interference (RNAi)
By newseditor
Posted 23 Oct
RNA structure and functions
By newseditor
Posted 19 Oct
Posters
A chemical biology/modular…
By newseditor
Posted 22 Aug
Single-molecule covalent ma…
By newseditor
Posted 04 Jul
ASCO-2020-HEALTH SERVICES R…
By newseditor
Posted 23 Mar
ASCO-2020-HEAD AND NECK CANCER
By newseditor
Posted 23 Mar
ASCO-2020-GENITOURINARY CAN…
By newseditor
Posted 23 Mar