Researchers have developed a DNA enzyme – or DNAzyme – that can distinguish between two RNA strands inside a cell and cut the disease-associated strand while leaving the healthy strand intact. This breakthrough “gene silencing” technology could revolutionize the development of DNAzymes for treating cancer, infectious diseases and neurological disorders.
DNAzymes are nucleic acid enzymes that cut other molecules. Through chemistry, the research team developed the Dz 46 enzyme, which specifically targets the allele-specific RNA mutation in the KRAS gene, the master regulator of cell growth and division, found in 25 percent of all human cancers. A description of how the team achieved this enzyme evolution was recently published in the journal Nature Communications.
“Generating DNAzymes that can effectively function in the natural conditions of cell systems has been more challenging than expected,” said corresponding author. “Our results suggest that chemical evolution could pave the way for development of novel therapies for a wide range of diseases.”
Gene silencing has been available for more than 20 years and some FDA-approved drugs incorporate various versions of the technology, but none can distinguish a single point mutation in an RNA strand. The benefit of the Dz 46 enzyme is that it can identify and cut a specific gene mutation, offering patients an innovative, precision medicine treatment.
The DNAzyme resembles the Greek letter omega and acts as a catalyst by accelerating chemical reactions. The “arms” on the left and right bind to the target region of the RNA. The loop binds to magnesium, and folds and cuts the RNA at a very specific site. But generating DNAzymes with robust multiple turnover activity under physiological conditions required some ingenuity, because DNAzymes are normally very dependent on concentrations of magnesium not found inside a human cell.
“We solved that problem by re-engineering the DNAzyme using chemistry to reduce its dependency on magnesium and did so in such a way that we could maintain high catalytic turnover activity,” the author said. “Ours is one of the very first, if not the first, example of achieving that. The next steps are to advance Dz 46 to a point that it’s ready for pre-clinical trials.”
The researchers have filed provisional patent applications on the chemical composition and cleavage preference of Dz 46.
https://www.nature.com/articles/s41467-023-38100-9
http://sciencemission.com/site/index.php?page=news&type=view&id=publications%2Fchemical-evolution-of&filter=22
Gene silencing DNA enzyme that can target a single molecule developed!
- 839 views
- Added
Latest News
Humans can intermittently r…
By newseditor
Posted 04 Dec
Why young kids don't get se…
By newseditor
Posted 04 Dec
Phosphatidylinositol 3,5-bi…
By newseditor
Posted 04 Dec
Probiotic-guided CAR-T cell…
By newseditor
Posted 04 Dec
Cell atlases of the human b…
By newseditor
Posted 04 Dec
Other Top Stories
Anti-anxiety drug clonazepam reduces autistic features in mouse model
Read more
A transcription repressor promotes astrocytogenesis during neocorti…
Read more
Cell fate decisions are made as early as four-cell stage
Read more
Early-stage embryos with abnormalities may still develop into healt…
Read more
Alternative spliced form of histone methyl transferase is required…
Read more
Protocols
Cheap, cost-effective, and…
By newseditor
Posted 03 Dec
Temporally multiplexed imag…
By newseditor
Posted 02 Dec
Efficient elimination of ME…
By newseditor
Posted 01 Dec
Personalized drug screening…
By newseditor
Posted 30 Nov
Multi-chamber cardioids unr…
By newseditor
Posted 29 Nov
Publications
Behavioral and brain respon…
By newseditor
Posted 04 Dec
Toward low-cost gene therap…
By newseditor
Posted 04 Dec
The bidirectional immune cr…
By newseditor
Posted 04 Dec
Leveraging human immune org…
By newseditor
Posted 04 Dec
Single-cell long-read seque…
By newseditor
Posted 04 Dec
Presentations
Hydrogels in Drug Delivery
By newseditor
Posted 12 Apr
Lipids
By newseditor
Posted 31 Dec
Cell biology of carbohydrat…
By newseditor
Posted 29 Nov
RNA interference (RNAi)
By newseditor
Posted 23 Oct
RNA structure and functions
By newseditor
Posted 19 Oct
Posters
A chemical biology/modular…
By newseditor
Posted 22 Aug
Single-molecule covalent ma…
By newseditor
Posted 04 Jul
ASCO-2020-HEALTH SERVICES R…
By newseditor
Posted 23 Mar
ASCO-2020-HEAD AND NECK CANCER
By newseditor
Posted 23 Mar
ASCO-2020-GENITOURINARY CAN…
By newseditor
Posted 23 Mar