Understanding how cancer cells evolve from healthy brain cells and evade treatment could open up potential new drug therapies for glioblastomas, one of the most common and lethal brain cancers, new research has revealed.
By bringing together neuroscience and oncology, the team is hopeful of finding a new method to treat the deadly disease.
“Glioblastomas can affect anyone and only 5% of patients survive more than 5 years following their diagnosis,” says study senior author.
“A major therapeutic challenge is the variability and adaptability of these brain tumor cells. From patient to patient, glioblastoma tumors are composed of several types of cells in varying proportions. It’s these variations and their incredible capacity to quickly change their identity to hide and escape treatments that make them challenging to eradicate.”
“However, recent advances in genetics have shown that the cell types found within glioblastomas maintain some resemblance to the cells of origin, before they became cancerous, and use molecular pathways common with brain cells for growth and survival or when changing their identity.”
In a new study, published in Trends in Cancer, the team explore these similarities and differences in a bid to shed light on the potential pathways used by tumor cells to escape treatment.
“What our research suggests is that we may learn from the genetics of healthy brain cells in order to target vulnerabilities in glioblastoma cancer cells,” says study lead author.
“Brain cells are not as good as cancer cells in being able to quickly change their identity in response to environmental changes, so if we manage to exploit and amplify this hidden inherited genetic weakness in cancer cells, we might be able to reverse their ability to escape treatments.”
The authors say despite cancer cells having an immense ability to change and hide, the research shows they still evolve along known brain pathways.
“We should be able to use this in targeted therapy, with treatments that restrict glioblastoma tumor cells ability to change, known as plasticity. Understanding more about these mechanisms will be helpful to develop new treatments in the future,” says the senior author.
“Glioblastoma cells are tough to kill because they are such a fast-moving target. This review helps us understand the different pathways in which they can hide. If we can block them in a corner, we may have a better chance to hit the target and cure this terrible disease.
“It is likely that effective therapies will be personalised and combine multiple agents, however knowing about the dynamic profile of glioblastoma cells, it seems essential to identify ways to block these identity shifts from occurring in the first place.”
The team is now currently testing potential treatments targeting subtypes of tumor cells that invade the human brain circuitry and are difficult to remove surgically, without harming the patient.
https://www.cell.com/trends/cancer/fulltext/S2405-8033(22)00233-3
http://sciencemission.com/site/index.php?page=news&type=view&id=publications%2Fneuronal-and&filter=22
Glioblastoma plasticity!
- 879 views
- Added
Edited
Latest News
Propionic acid protects ner…
By newseditor
Posted 28 Jan
How cells prevent harmful e…
By newseditor
Posted 28 Jan
Structured cerebellar conne…
By newseditor
Posted 28 Jan
Origins of pleasurable touc…
By newseditor
Posted 25 Jan
Unknown way cells protect t…
By newseditor
Posted 25 Jan
Other Top Stories
Mating can cause epigenetic changes that last for 300 generations
Read more
Gene therapy to treat developmental disabilities
Read more
Neurotransmitter release impairment in schizophrenia with genetic m…
Read more
Prenatal editing in preclinical model to correct lysosomal storage…
Read more
Potential role of 'junk DNA' sequence in aging, cancer
Read more
Protocols
Machine learning prediction…
By newseditor
Posted 09 Jan
Differentiating PC12 cells…
By newseditor
Posted 09 Jan
Ultrasensitive sensors reve…
By newseditor
Posted 05 Jan
In vitro-derived medium spi…
By newseditor
Posted 04 Jan
Molecular and spatial signa…
By newseditor
Posted 30 Dec
Publications
Brainstem networks construc…
By newseditor
Posted 28 Jan
The role of platelets in im…
By newseditor
Posted 28 Jan
Invariant inhibition to cal…
By newseditor
Posted 27 Jan
Birdsong neuroscience and t…
By newseditor
Posted 27 Jan
Touch neurons underlying do…
By newseditor
Posted 25 Jan
Presentations
Hydrogels in Drug Delivery
By newseditor
Posted 12 Apr
Lipids
By newseditor
Posted 31 Dec
Cell biology of carbohydrat…
By newseditor
Posted 29 Nov
RNA interference (RNAi)
By newseditor
Posted 23 Oct
RNA structure and functions
By newseditor
Posted 19 Oct
Posters
ASCO-2020-HEALTH SERVICES R…
By newseditor
Posted 23 Mar
ASCO-2020-HEAD AND NECK CANCER
By newseditor
Posted 23 Mar
ASCO-2020-GENITOURINARY CAN…
By newseditor
Posted 23 Mar
ASCO-2020-GENITOURINARY CAN…
By newseditor
Posted 10 Mar
ASCO-2020-GYNECOLOGIC CANCER
By newseditor
Posted 10 Mar