Epigenetic changes occur in the DNA of breast cancer cells that have developed a resistance to hormone therapy, an effective treatment for ER+ breast cancer, which accounts for 70% of all diagnoses.
Reversing these changes, researchers say, has significant potential to help reduce breast cancer relapse.
A research team showed that the 3D structure of DNA is 'rewired' in hormone resistant ER+ breast cancers, altering which genes are activated and which genes are silenced in the cells. The researchers published the findings in the journal Nature Communications.
The sex hormone estrogen can be an inadvertent driver of cancer growth - ER+ breast cancers grow when estrogen 'docks' to their cells. Treatment that blocks estrogen, known as hormone therapy, is successful at stopping cancer growth and reducing relapse, however many breast cancers become resistant to the treatment over time.
"Treatment resistance is a significant health problem that leads to a third of all ER+ breast cancer patients on hormone therapy relapsing within 15 years," says the study's first author.
"We are interested in epigenetic changes to DNA, the layer of instructions that organises and regulates DNA's activity, that underpin the development of hormone resistance in breast cancer. Understanding these fundamental changes may help guide development of future treatments that either prevent resistance from developing, or reverse it once it has occurred."
Using chromosome conformation capture, a cutting-edge technique that provides a snapshot of how DNA is arranged and interacts in three dimensions in the cell, the researchers compared different ER+ breast cancer cells that were either sensitive or resistant to hormone treatment.
"Between breast cancer cells that were still sensitive to hormone treatment and those that had developed resistance, we saw significant changes in 3D interactions of DNA regions that control gene activation. Including at genes that control the estrogen receptor levels in the cells," says the first author.
"Further, we found that this 3D 'rewiring' occurred at DNA regions that were methylated, which is an epigenetic change that the team has already linked to hormone resistance."
The researchers say that the altered DNA methylation at critical regulatory regions may explain how the 3D structure of DNA is rewired as a cancer cell develops hormone resistance, allowing the cancer to better evade treatment.
The researchers say the next step is to investigate whether epigenetic changes could be reversed to stop hormone resistance, using existing drugs that are already in clinical trials for other cancers, including lung and colorectal cancer.
"Once ER+ breast cancer patients become resistant to hormone therapy, it is more difficult to treat," says the senior author. "We hope our research will help lead to combination treatments that allow women to take hormone therapy for longer, giving them better clinical outcomes."
https://www.garvan.org.au/news-events/news/hormone-resistance-in-breast-cancer-linked-to-dna-2018rewiring2019-1
https://www.nature.com/articles/s41467-019-14098-x
http://sciencemission.com/site/index.php?page=news&type=view&id=publications%2Fepigenetic-reprogramming&filter=22
Hormone resistance in breast cancer linked to DNA 'rewiring'
- 3,243 views
- Added
Edited
Latest News
Citrullination is a key pla…
By newseditor
Posted 14 Sep
Senolytic therapy clinical…
By newseditor
Posted 14 Sep
Genetic tools probe microbi…
By newseditor
Posted 13 Sep
A secret passage for mutant…
By newseditor
Posted 11 Sep
Specialized T cells in the…
By newseditor
Posted 10 Sep
Other Top Stories
Body clock connects and co-ordinates genetic clock among organs and…
Read more
Blocking RNA silencing protein in liver to prevent obesity and diab…
Read more
A mere drop of blood makes skin cells line up
Read more
Mannose changes gut microbiome and prevents obesity
Read more
Diabetes may begin more than 20 years before diagnosis
Read more
Protocols
D-LMBmap: a fully automated…
By newseditor
Posted 30 Sep
Genetic manipulation of Pat…
By newseditor
Posted 13 Sep
Single-nucleus RNA sequenci…
By newseditor
Posted 08 Sep
Engineering RNA export for…
By newseditor
Posted 25 Aug
ATP production from electri…
By newseditor
Posted 21 Aug
Publications
Alteration in the chromatin…
By newseditor
Posted 30 Sep
Identification of genes req…
By newseditor
Posted 29 Sep
Mitochondrial degradation:…
By newseditor
Posted 29 Sep
The promise of new anti-obe…
By newseditor
Posted 29 Sep
Timing of lifespan influenc…
By newseditor
Posted 16 Sep
Presentations
Hydrogels in Drug Delivery
By newseditor
Posted 12 Apr
Lipids
By newseditor
Posted 31 Dec
Cell biology of carbohydrat…
By newseditor
Posted 29 Nov
RNA interference (RNAi)
By newseditor
Posted 23 Oct
RNA structure and functions
By newseditor
Posted 19 Oct
Posters
A chemical biology/modular…
By newseditor
Posted 22 Aug
Single-molecule covalent ma…
By newseditor
Posted 04 Jul
ASCO-2020-HEALTH SERVICES R…
By newseditor
Posted 23 Mar
ASCO-2020-HEAD AND NECK CANCER
By newseditor
Posted 23 Mar
ASCO-2020-GENITOURINARY CAN…
By newseditor
Posted 23 Mar