Chronic inflammation in the gut increases the risk of colon cancer by as much as 500 percent, and now Duke University researchers think they know why.
Their new study points to a biomarker in the cellular machinery that could not only serve as an early warning of colon cancer, but potentially be harnessed to counteract advanced forms of the disease.
Published in the journal Cell Stem Cell, Duke biomedical engineers show how colon cancer development is intricately linked to a specific microRNA that dictates how cells divide.
In the study, the group focused on a microRNA called miR-34a that gives cancer stem cells the odd ability to divide asymmetrically. This process controls the cancerous stem cell population and generates a diverse set of cells.
While researchers knew that miR-34a was responsible for this ability, nobody knew where it came from, because normal, healthy colon stem cells don't asymmetrically divide and don't need this microRNA. They wondered if there was a mutation unique to cancer stem cells, or a hidden role for the microRNA in normal physiology.
To find out, researchers deleted miR-34a from the genetic code of some mice. But nothing happened. In the latest study, however, the problem showed up when the mice's tissues became inflamed. Without any microRNA miR-34a, their stem cells quickly grew out of control and formed many tumor-like structures.
Based on the study, the group concluded that even though miR-34a is active in cancer, it's actually a good guy. Triggered to act when the gut becomes inflamed, miR-34a forces the process of asymmetrical division, helping to control normal stem cell populations.
Even in the early stages of tumor growth, the microRNA remains active to keep the cancer stem cell population down. As the cancer progresses however, its cells develop mutations that enable shutting off miR-34a, causing cells to divide into flexible hybrids that can revert back into stem cells if needed. It's this flexibility that makes late-stage cancers so difficult to eradicate.
With a test to look for elevated levels of miR-34a, researchers could create an early warning system to catch cancers in their youthful stages when they are much easier to cure. And as a possible treatment for late-stage cancer, researchers are trying to get the cancer cells to express miR-34a again. This would stop the tumor cells from gaining the flexibility to revert back to stem cells and allow doctors to wipe them out once and for all.
Clinical trials are currently trying to do just this in multiple cancer types, but this is the first study that has shown that it might also work for colon cancer. The discovery will also help researchers design clinical trials and pick the patients who have the best chance to respond to the therapy.
http://pratt.duke.edu/news/how-gut-inflammation-sparks-colon-cancer
Edited
Latest News
Does lymphatic system produ…
By newseditor
Posted 07 Feb
Targeting toxic soluble Aβ…
By newseditor
Posted 07 Feb
A change in brain function…
By newseditor
Posted 06 Feb
Structures of LRP2 reveal a…
By newseditor
Posted 06 Feb
The structure of a function…
By newseditor
Posted 05 Feb
Other Top Stories
Graphene to detect cancer cells
Read more
Spicy molecule inhibits growth of breast cancer cells
Read more
Tumor cells move differently than normal ones
Read more
Role of fat utilization (beta-oxidation) in cancer spread!
Cancer cells spread to other sites in the body through promoting the growth of new 'roads' to travel on. In a study to be published in the top scientific journal, Nature, an international and multidisciplinary team of researchers, discovered how a shift to increased fat utilization is required for the development and growth of these 'roads', termed lymphatic vessels - a special kind of blood vessels…
Read more
Personalizing cancer treatment- patients sensitive to new type of c…
Read more
Protocols
High-yield vesicle-packaged…
By newseditor
Posted 05 Feb
Machine learning prediction…
By newseditor
Posted 09 Jan
Differentiating PC12 cells…
By newseditor
Posted 09 Jan
Ultrasensitive sensors reve…
By newseditor
Posted 05 Jan
In vitro-derived medium spi…
By newseditor
Posted 04 Jan
Publications
IDH2 and TET2 mutations syn…
By newseditor
Posted 07 Feb
Progression of regional cor…
By newseditor
Posted 07 Feb
Early diagnosis and treatme…
By newseditor
Posted 07 Feb
Disinhibition of the orbito…
By newseditor
Posted 06 Feb
Renal control of life-threa…
By newseditor
Posted 06 Feb
Presentations
Hydrogels in Drug Delivery
By newseditor
Posted 12 Apr
Lipids
By newseditor
Posted 31 Dec
Cell biology of carbohydrat…
By newseditor
Posted 29 Nov
RNA interference (RNAi)
By newseditor
Posted 23 Oct
RNA structure and functions
By newseditor
Posted 19 Oct
Posters
ASCO-2020-HEALTH SERVICES R…
By newseditor
Posted 23 Mar
ASCO-2020-HEAD AND NECK CANCER
By newseditor
Posted 23 Mar
ASCO-2020-GENITOURINARY CAN…
By newseditor
Posted 23 Mar
ASCO-2020-GENITOURINARY CAN…
By newseditor
Posted 10 Mar
ASCO-2020-GYNECOLOGIC CANCER
By newseditor
Posted 10 Mar