Stem cell scientists have revealed the origins of a common ovarian cancer by modeling fallopian tube tissues, allowing them to characterize how a genetic mutation puts women at high risk for this cancer. The created tissues, known as organoids, hold potential for predicting which individuals will develop ovarian cancer years or even decades in advance, allowing for early detection and prevention strategies.
Ovarian cancer is the leading cause of gynecologic cancer deaths in the U.S., in part because symptoms are often subtle and most tumors elude detection until they are in advanced stages and have spread past the ovaries. While the lifetime risk of developing ovarian cancer is less than 2% for the general female population, the estimated risk for women who carry a mutation in the so-called BRCA-1 gene is between 35% and 70%, according to the American Cancer Society.
Faced with such steep odds, some women with BRCA-1 mutations choose to have their breasts or ovaries and fallopian tubes surgically removed even though they may never develop cancers in these tissues. The new study findings, published in Cell Reports, could help physicians pinpoint which of these women are most likely to develop ovarian cancer in the future—and which are not—and pursue new ways to block the process or treat the cancer.
“We created these fallopian organoids using cells from women with BRCA-1 mutations who had ovarian cancer," explained the senior author. "Our data supports recent research indicating that ovarian cancer in these patients actually begins with cancerous lesions in the fallopian tube linings. If we can detect these abnormalities at the outset, we may be able to short-circuit the ovarian cancer."
To make their discoveries, the research team generated induced pluripotent stem cells (IPSCs), which can produce any type of cell. They started with blood samples taken from two groups of women: young ovarian cancer patients who had the BRCA-1 mutation and a control group of healthy women. Investigators then used the iPSCs to produce organoids modeling the lining of fallopian tubes and compared the organoids in the two groups.
"We were surprised to find multiple cellular pathologies consistent with cancer development only in the organoids from the BRCA-1 patients," said the project scientist and first author of the Cell Reports study. "Organoids derived from women with the most aggressive ovarian cancer displayed the most severe organoid pathology."
Besides showing how ovarian cancer is "seeded" in the fallopian tubes of women with mutated BRCA-1, the organoid technology potentially can be used to determine if a drug might work against the disease in an individual, Svendsen said. Each organoid carries the genes of the person who provided the blood sample, making it a "twin" of that person's own fallopian tube linings. Multiple drugs can be tested on the organoids without exposing the patient to them.
https://www.cell.com/cell-reports/fulltext/S2211-1247(21)01642-9
http://sciencemission.com/site/index.php?page=news&type=view&id=cancer%2Fhuman-ipsc-derived&filter=22
How ovarian cancer starts in high-risk women
- 837 views
- Added
Latest News
Antiaging effect of FGF21 in low protein diet
How antibiotics use can lead to fungal infection
Gene editing can alter the social behavior of animals
First successful treatment of mycobacterial lung infection with bacteriophages
Biomaterial improves islet transplants for treatment of type 1 diabetes
Other Top Stories
Genetic Codes with No Dedicated Stop Codon
Pre-assembled Nuclear Pores Insert into the Nuclear Envelope during Early Development
New 'mega-complex' involved in cell signaling
3D structure of Alzheimer's disease-associated amyloid fibril
Tools for Heart Regeneration
Protocols
Antibody structure prediction using interpretable deep learning
A semi-automated workflow for brain Slice Histology Alignment, Registration, and Cell Quantificat…
NanoDam identifies Homeobrain (ARX) and Scarecrow (NKX2.1) as conserved temporal factors in the D…
Spatiotemporal transcriptomic atlas of mouse organogenesis using DNA nanoball-patterned arrays
Integrating neuroimaging and gene expression data using the imaging transcriptomics toolbox
Publications
FGF21 is required for protein restriction to extend lifespan and improve metabolic health in male…
Spreading depolarizations in ischaemia after subarachnoid haemorrhage, a diagnostic phase III study
CRISPR-Cas9 editing of the arginine-vasopressin V1a receptor produces paradoxical changes in soci…
Mitochondrial LETM1 drives ionic and molecular clock rhythms in circadian pacemaker neurons
Ca2+ signals in plant immunity
Presentations
Hydrogels in Drug Delivery
Lipids
Cell biology of carbohydrate metabolism
RNA interference (RNAi)
RNA structure and functions
Posters
ASCO-2020-HEALTH SERVICES RESEARCH AND QUALITY IMPROVEMENT
ASCO-2020-HEAD AND NECK CANCER
ASCO-2020-GENITOURINARY CANCER–KIDNEY AND BLADDER
ASCO-2020-GENITOURINARY CANCER–PROSTATE, TESTICULAR, AND PENILE
ASCO-2020-GYNECOLOGIC CANCER