How proteins control accessibility of chromatin to regulate cancer growth

How proteins control accessibility of chromatin to regulate cancer growth


Someday, scientists may be able to prevent cancer by controlling two proteins that operate deep inside the quagmire of epigenetic cell fate transitions, a new paper suggests.

Published by Nature, the article describes a dynamic push and pull between the proteins ANP32E and H2AZ. Their relationship is significant because too little of H2AZ promotes cell division and aggressive tumors, while high levels of H2AZ promotes chaos and metastatic cancer -- and ANP32E acts as a "chaperone" that directs H2AZ, said the study's corresponding author.

Abundant levels of H2AZ are often found in people with breast and brain cancer and melanoma.

With a "normal" amount of H2AZ, healthy cells can turn off the signals that permit cancer cells to divide and tumors to grow.

Scientists and cancer patients are learning what biological factors influence inherited gene changes and predisposition to diseases, and how lifestyle behaviors passed down through generations and chemical exposures can also switch the function of genes and lead to cancer and other illnesses.

The core of epigenetics is understanding how two cells can have the same DNA but have different functions in the body. The work in the lab adds a critical bit of information as scientists clamor to find the factors that activate or silence genes during cell transitions.

The lab showed that when they eliminated ANP32E from connective tissue of mice, H2AZ spreads wildly. Therefore, if researchers can find a way to inhibit ANP32E and control the H2AZ protein in humans, it might make cancer cells more sensitive to anti-cancer drugs or immune-system attack.

Taking advantage of advanced technology, researchers can study cell transitions in specific regions of DNA. The team was able to hone in on exactly how ANP32E and H2AZ coordinate to control DNA activity and cellular instructions.

The "precise control of ANP32E levels and H2A positioning may be critical for preventing carcinogenesis," the paper stated. "Thus, it will be important for future studies to investigate the mechanisms described here in the context of human diseases, including cancer."

https://www.urmc.rochester.edu/news/story/one-way-to-prevent-cancer-map-the-fundamentals-of-how-cells-go-awry

https://www.nature.com/articles/s41467-020-18821-x

http://sciencemission.com/site/index.php?page=news&type=view&id=publications%2Fgenome-wide-chromatin&filter=22

Edited

Rating

Unrated
Rating: