Cellular life hinges on a network of hollow cables called microtubules dynamically lengthening and shortening according to the needs of the moment. During cell division, for instance, these cables latch onto chromosomes and retract—yanking chromosomes to either end of the cell to ensure that each daughter cell receives an equitable share of genetic information. In addition to regulating the dynamics of microtubules, the cell also regulates the precise timing and location of microtubule formation. There’s little room for error.
Now, a new study sheds light on how the formation of human microtubules drives cell division. The paper, published in the Journal of Cell Biology, describes the inner workings of the γ-Tubulin Ring Complex (γ-TuRC), an assembly of proteins responsible for nucleating and stabilizing microtubules. The findings clarify the γ-TuRC’s mechanism, and may inform researchers studying γ-TuRC mutations and associated diseases.
“We were able to characterize the γ-TuRC’s capping activity, and explore its role in cell division,” says the grad student. “The more we learn about what this complex does and how it does it, the more answers we might be able to find about how the γ-TuRC relates to human diseases.”
The lifecycle of a microtubule typically begins when protein dimers, composed of alpha and beta tubulin, interact to form long tubular polymers. But that process takes time that the cell cannot always spare. When cells need to build microtubules in a matter of seconds, they instead rely on a microtubule nucleation complex called the γ-TuRC. In human cells, γ-TuRCs are anchored at microtubule organizing centers such as centrosomes, where tubulin dimers can assemble onto the γ-TuRC and rapidly polymerize into microtubules.
This is not, however, the only role for the γ-TuRC in microtubule formation. Studies have shown that the γ-TuRC also serves as a cap for microtubules, preventing the sudden addition or loss of tubulin dimers and ensuring that microtubules-in-action are localized to the right parts of the cell.
“Capping is another critical function of the γ-TuRC,” the author explains. “It stabilizes the microtubule, which protects it from depolymerization, and it also allows the microtubule to become anchored at specific sites, which ensures that microtubules are positioned correctly.”
The authors wanted to study the γ-TuRC’s capping activity in isolation, so they collaborated to manufacture and characterize a crippled form of γ-TuRC. This mutant was incapable of nucleating microtubules but it remained to be determined how this mutation affected the γ-TuRC’s capping activity.
To find out whether γ-TuRC would deliver on its capping potential—or whether its nucleation function was so closely linked to its capping function that, if one went offline, the other would follow—they conducted a series of experiments and used a variety of imaging techniques to visualize the mutant γ-TuRC interacting with microtubules in vitro and in human cells.
Their results suggest that the mutant γ-TuRC can still cap microtubules—demonstrating, for the first time, that the γ-TuRC’s role in capping microtubules is independent of its role in nucleating them. The team also showed that the mutant γ-TuRC plays an important role in microtubule formation outside of the centrosome during mitosis, suggesting that capping itself contributes to microtubule formation.
The findings may have long-term implications for researchers studying developmental diseases linked to γ-tubulin irregularities, such as microcephaly, and cancers including medulloblastoma, myelomas, non-small cell carcinoma, breast cancer, gliomas, and glioblastoma. The work may also fill in the blanks for scientists who have long contended with an incomplete understanding of the γ-TuRC. For instance, the atuhor says, the findings are among the first to suggest that perhaps the cell can modulate between two states, choosing if the γ-TuRC should be nucleating or capping a microtubule in a context dependent manner.
“This work, which combines biochemistry, structural biology, and cell biology, is shedding light on fundamental mechanisms,” the senior author says. “In the long term, this may help us better understand the emergence of diseases related to this complex.”
https://rupress.org/jcb/article/222/3/e202204102/213828/A-nucleotide-binding-independent-role-for-tubulin
http://sciencemission.com/site/index.php?page=news&type=view&id=publications%2Fa-nucleotide-binding&filter=22
How the formation of human microtubules drives cell division
- 617 views
- Added
Latest News
Citrullination is a key pla…
By newseditor
Posted 14 Sep
Senolytic therapy clinical…
By newseditor
Posted 14 Sep
Genetic tools probe microbi…
By newseditor
Posted 13 Sep
A secret passage for mutant…
By newseditor
Posted 11 Sep
Specialized T cells in the…
By newseditor
Posted 10 Sep
Other Top Stories
Possible link between Zika and severe joint condition at birth
Read more
Structure of rhinovirus C linked to severe childhood asthma
Read more
Combating malaria with odor-baited trap for mosquitoes
Read more
New family of bacterial cell wall builders
Read more
Time of day influences our susceptibility to infection
Read more
Protocols
Genetic manipulation of Pat…
By newseditor
Posted 13 Sep
Single-nucleus RNA sequenci…
By newseditor
Posted 08 Sep
Engineering RNA export for…
By newseditor
Posted 25 Aug
ATP production from electri…
By newseditor
Posted 21 Aug
Labeling PIEZO2 activity in…
By newseditor
Posted 20 Aug
Publications
Timing of lifespan influenc…
By newseditor
Posted 16 Sep
Transformer-based biomarker…
By newseditor
Posted 16 Sep
Somatic variants of MAP3K3…
By newseditor
Posted 16 Sep
The NLRP3 inflammasome and…
By newseditor
Posted 15 Sep
Targeting the metabolism of…
By newseditor
Posted 15 Sep
Presentations
Hydrogels in Drug Delivery
By newseditor
Posted 12 Apr
Lipids
By newseditor
Posted 31 Dec
Cell biology of carbohydrat…
By newseditor
Posted 29 Nov
RNA interference (RNAi)
By newseditor
Posted 23 Oct
RNA structure and functions
By newseditor
Posted 19 Oct
Posters
A chemical biology/modular…
By newseditor
Posted 22 Aug
Single-molecule covalent ma…
By newseditor
Posted 04 Jul
ASCO-2020-HEALTH SERVICES R…
By newseditor
Posted 23 Mar
ASCO-2020-HEAD AND NECK CANCER
By newseditor
Posted 23 Mar
ASCO-2020-GENITOURINARY CAN…
By newseditor
Posted 23 Mar