Scientists found immune and tumor cells compete over glutamine, a major nutrient in their local environment, with significant implications for anti-cancer activity. If cancer cells monopolize glutamine, they can prevent immune cells from destroying cancer. The findings show that supplying glutamine directly to tumors helps initiate the immune system’s cancer-killing activity.
The researchers also identified a molecular pathway that could serve as a potential drug target to achieve the same effect. The findings were published today in Nature.
“It’s a nutrient tug-of-war between tumor cells and immune cells,” said corresponding author. “If tumor cells use all the available glutamine, then a specialized immune cell type known as the dendritic cell is starved of glutamine, leading to impaired anti-tumor immune function. But if we can supplement enough glutamine to the tumor microenvironment, that will inhibit tumor growth because dendritic cells will use it and activate the adaptive immune response.” Dendritic cells turn on cancer-killing immune cells called T cells.
The group showed that resupplying glutamine in the tumor microenvironment severely reduced tumor growth because dendritic cells were then better able to activate anti-cancer T cells. The tumor microenvironment is composed of chemicals and cells around cancer cells. Infamously, cancer cells secrete many signals to turn the immune response “off” in this area, especially the T cells that threaten their destruction. The team is the first to identify a nutrient as a major signal between cancer cells and dendritic cells in this local environment.
“We are very excited to establish the link between glutamine, therapeutic effect and dendritic cells,” said a first author. “It’s critical for the efficacy of immune checkpoint blockade and adoptive cell transfer therapy.”
Immune checkpoint blockade therapy inhibits the “off” signals cancer cells send to immune cells that suppress the immune response in the tumor microenvironment. These therapies have been highly effective, but only in a small number of patients. The researchers found that supplying glutamine in combination with checkpoint therapy enhanced anti-cancer activity in mice.
“This paper provides a proof of concept that nutrients could act synergistically with checkpoint inhibitors for tumor treatment as a new strategy for combination therapy,” the author said.
While much cancer research has focused on T cells because of their direct cancer-killing activity, this study is one of the first to examine how the tumor microenvironment affects the dendritic cells, which activate T cells. The researchers found that without glutamine, dendritic cells failed to activate the T cells that directly kill cancer cells.
“Even though T cells are the cornerstone for anti-cancer immunity, they cannot do the job by themselves,” the author explained. “We can think of dendritic cells as the driver and the T cell as the car. If you do not have a driver, the car will not move. Moreover, nutrients like glutamine serve as the license for the driver.”
Similarly, when the researchers removed the proteins that respond to or take up glutamine in dendritic cells, the immune cells failed to activate cancer-killing cells. These proteins, called FLCN and SLC38A2, are important in sensing and acquiring nutrients but have not previously been connected to immune cells’ reactions to tumors. They may serve as potent drug targets to improve cancer therapy.
“We’re extremely excited about these findings,” the author said. “In addition to enhancing the therapeutic intervention, we have provided a conceptual advance by showing how nutrients mediate cell-cell communication, an understudied concept in the field of immunometabolism.”
https://www.nature.com/articles/s41586-023-06299-8
http://sciencemission.com/site/index.php?page=news&type=view&id=publications%2Fslc38a2-and-glutamine&filter=22
Immune and tumor cell "tug-of-war" controls anti-cancer activity
- 936 views
- Added
Latest News
Blocking Cdk5 activation al…
By newseditor
Posted 09 Dec
Protein found in brain link…
By newseditor
Posted 09 Dec
Calcium acts as missing lin…
By newseditor
Posted 09 Dec
How repeated traumatic brai…
By newseditor
Posted 08 Dec
Metformin rescues neuronal…
By newseditor
Posted 08 Dec
Other Top Stories
Tracking itch with new wearable sensor
Read more
Wireless, optogenetic tools to alter individual and social behaviors
Read more
Structure of hippocampal AMPA receptor assemblies involved in memor…
Read more
Brain-computer interface creates text by decoding brain signals ass…
Read more
New neuroelectronic system can read and modify brain circuits
Read more
Protocols
Brain-wide circuit-specific…
By newseditor
Posted 05 Dec
Cheap, cost-effective, and…
By newseditor
Posted 03 Dec
Temporally multiplexed imag…
By newseditor
Posted 02 Dec
Efficient elimination of ME…
By newseditor
Posted 01 Dec
Personalized drug screening…
By newseditor
Posted 30 Nov
Publications
Neuromelanin accumulation d…
By newseditor
Posted 09 Dec
Mitochondrial complexome an…
By newseditor
Posted 09 Dec
NGLY1 mutations cause prote…
By newseditor
Posted 09 Dec
What Is Alpha-Gal Syndrome?
By newseditor
Posted 09 Dec
Extracellular calcium funct…
By newseditor
Posted 09 Dec
Presentations
Hydrogels in Drug Delivery
By newseditor
Posted 12 Apr
Lipids
By newseditor
Posted 31 Dec
Cell biology of carbohydrat…
By newseditor
Posted 29 Nov
RNA interference (RNAi)
By newseditor
Posted 23 Oct
RNA structure and functions
By newseditor
Posted 19 Oct
Posters
A chemical biology/modular…
By newseditor
Posted 22 Aug
Single-molecule covalent ma…
By newseditor
Posted 04 Jul
ASCO-2020-HEALTH SERVICES R…
By newseditor
Posted 23 Mar
ASCO-2020-HEAD AND NECK CANCER
By newseditor
Posted 23 Mar
ASCO-2020-GENITOURINARY CAN…
By newseditor
Posted 23 Mar