Glioblastoma (GBM) is the most aggressive and lethal form of brain tumor. Despite treatment, GBM recurrence is inevitable and tends to occur outside surgical margins or in locations remote to the primary tumor, highlighting the central role played by tumor infiltration in this malicious disease.
Little is known about the underlying molecular mechanisms driving GBM infiltration, but in a new study published in the journal Nature, researchers working with animal models reveal a novel process by which neurons in locations remote to the primary tumor provoke expression of genes from gliomblastoma that subsequently drive tumor infiltration.
“Previous studies have shown associations between the presence of GBM and increased neuronal activity in surrounding brain regions, which can promote tumor progression,” said the first author.
To study how neurons stimulate GBM infiltration, the researchers first determined which neuronal populations promoted glioma intrusion. They hypothesized that callosal projection neurons (CPNs) localized in the cortical hemisphere contralateral to the primary tumor contributed to this phenomenon. CPNs extend across the brain along the corpus callosum, a strip of white matter that connects the left and right cerebral hemispheres.
“Severing the corpus callosum eliminated the neuronal activity-dependent acceleration of GBM infiltration that was observed with the intact control, supporting that an intact corpus callosum is necessary to promote glioma progression and implicating CPNs’ long-range projections in remotely driving GBM infiltration,” the author said.
“The findings suggest that GBMs receive neuronal inputs from a host of brain regions, implying that exposure to a diverse range of neuroactive compounds can potentially influence tumor growth. It’s now clear that tumor-neuron interactions are more widespread than previously thought,” said the corresponding author of the work.
“CPNs promote tumor infiltration, and the tumor affects neuronal connections or synapses. The tumor remodels local neuronal synapses and makes direct synaptic connections, raising the possibility that it alters brain circuit activity in these regions that are distant from the primary tumor.”
Further analyses showed mechanistic details underlying these observations. The researchers found that the infiltrating tumor population is enriched for axon guidance genes, including SEMA4F, which they identified as an essential factor for glioma progression and neuronal activity-dependent infiltration. Interestingly, SEMA4F also promotes neuronal hyperactivity.
“Taken all together, we propose a model in which neurons prompt the expression of genes from glioma tumors that subsequently drive infiltration and their own synaptic activity,” the first author said. “A better understanding of the two-way conversation between GBM and CPNs is an important step toward improved brain tumor treatments.”
https://www.nature.com/articles/s41586-023-06267-2
Long-range neuronal connections drive glioblastoma invasion
- 784 views
- Added
Latest News
Blocking Cdk5 activation al…
By newseditor
Posted 09 Dec
Protein found in brain link…
By newseditor
Posted 09 Dec
Calcium acts as missing lin…
By newseditor
Posted 09 Dec
How repeated traumatic brai…
By newseditor
Posted 08 Dec
Metformin rescues neuronal…
By newseditor
Posted 08 Dec
Other Top Stories
New target for acute myeloid leukemia identified
Read more
New target for triple negative breast cancer!
Read more
Tumors send signals for organ-specific metastasis
Read more
Glucose-Independent Tumor Growth by Mitochondrial Enzyme
Read more
Role of BRCA2 in DNA Repair
Read more
Protocols
AA2P-mediated DNA demethyla…
By newseditor
Posted 09 Dec
Brain-wide circuit-specific…
By newseditor
Posted 05 Dec
Cheap, cost-effective, and…
By newseditor
Posted 03 Dec
Temporally multiplexed imag…
By newseditor
Posted 02 Dec
Efficient elimination of ME…
By newseditor
Posted 01 Dec
Publications
Neuromelanin accumulation d…
By newseditor
Posted 09 Dec
Mitochondrial complexome an…
By newseditor
Posted 09 Dec
NGLY1 mutations cause prote…
By newseditor
Posted 09 Dec
What Is Alpha-Gal Syndrome?
By newseditor
Posted 09 Dec
Extracellular calcium funct…
By newseditor
Posted 09 Dec
Presentations
Hydrogels in Drug Delivery
By newseditor
Posted 12 Apr
Lipids
By newseditor
Posted 31 Dec
Cell biology of carbohydrat…
By newseditor
Posted 29 Nov
RNA interference (RNAi)
By newseditor
Posted 23 Oct
RNA structure and functions
By newseditor
Posted 19 Oct
Posters
A chemical biology/modular…
By newseditor
Posted 22 Aug
Single-molecule covalent ma…
By newseditor
Posted 04 Jul
ASCO-2020-HEALTH SERVICES R…
By newseditor
Posted 23 Mar
ASCO-2020-HEAD AND NECK CANCER
By newseditor
Posted 23 Mar
ASCO-2020-GENITOURINARY CAN…
By newseditor
Posted 23 Mar