A new study shows how a gene mutation found in several human cancers, including leukemia, gliomas and melanoma, promotes the growth of aggressive tumors.
The research, published by the journal Cell Reports, also suggests a possible way to kill these kinds of tumors by targeting an important enzyme.
The researchers investigated mutations in a gene that codes for the protein POT1. This protein normally forms a protective cap around the ends of chromosomes (called telomeres), stopping cell machinery from mistakenly damaging the DNA there and causing harmful mutations.
POT1 is so critical that cells without functional POT1 would rather die than pass on POT1 mutations. Stress in these cells leads to the activation of an enzyme, called ATR, that triggers programmed cell death.
Knowing this, scientists in recent years were surprised to find recurrent mutations affecting POT1 in several human cancers, including leukemia and melanoma. Using a mouse model, the researchers found that mutations in POT1 lead to cancer when combined with a mutation in a gene called p53.
"The cells no longer have the mechanism for dying, and mice develop really aggressive thymic lymphomas," said the co-lead author.
P53, a well-known tumor suppressor gene, is a cunning accomplice. When mutated, it overrides the protective cell death response initiated by ATR. Then, without POT1 creating a protective cap, the chromosomes are fused together and the DNA is rearranged, driving the accumulation of even more mutations. These mutant cells go on to proliferate and become aggressive tumors.
The findings led the team to consider a new strategy for killing these tumors.
Scientists know that all cells--even cancer cells--will die if they have no ATR. Since tumors with mutant POT1 already have low ATR levels, the researchers think a medicine that knocks out the remaining ATR could kill tumors without affecting healthy cells. "This study shows that by looking at basic biological questions, we can potentially find new ways to treat cancer," said the co-lead.
http://www.scripps.edu/news/press/2016/20160526lazzerini.html
Latest News
Citrullination is a key pla…
By newseditor
Posted 14 Sep
Senolytic therapy clinical…
By newseditor
Posted 14 Sep
Genetic tools probe microbi…
By newseditor
Posted 13 Sep
A secret passage for mutant…
By newseditor
Posted 11 Sep
Specialized T cells in the…
By newseditor
Posted 10 Sep
Other Top Stories
Women aren't as competitive as men?
Read more
Shared brain mechanism in bilingualism
Read more
A striking difference between neurons of humans and other mammals
Read more
A key brain region responds to faces similarly in infants and adults
Read more
Neural code for word recognition
Read more
Protocols
Genetic manipulation of Pat…
By newseditor
Posted 13 Sep
Single-nucleus RNA sequenci…
By newseditor
Posted 08 Sep
Engineering RNA export for…
By newseditor
Posted 25 Aug
ATP production from electri…
By newseditor
Posted 21 Aug
Labeling PIEZO2 activity in…
By newseditor
Posted 20 Aug
Publications
Timing of lifespan influenc…
By newseditor
Posted 16 Sep
Transformer-based biomarker…
By newseditor
Posted 16 Sep
Somatic variants of MAP3K3…
By newseditor
Posted 16 Sep
The NLRP3 inflammasome and…
By newseditor
Posted 15 Sep
Targeting the metabolism of…
By newseditor
Posted 15 Sep
Presentations
Hydrogels in Drug Delivery
By newseditor
Posted 12 Apr
Lipids
By newseditor
Posted 31 Dec
Cell biology of carbohydrat…
By newseditor
Posted 29 Nov
RNA interference (RNAi)
By newseditor
Posted 23 Oct
RNA structure and functions
By newseditor
Posted 19 Oct
Posters
A chemical biology/modular…
By newseditor
Posted 22 Aug
Single-molecule covalent ma…
By newseditor
Posted 04 Jul
ASCO-2020-HEALTH SERVICES R…
By newseditor
Posted 23 Mar
ASCO-2020-HEAD AND NECK CANCER
By newseditor
Posted 23 Mar
ASCO-2020-GENITOURINARY CAN…
By newseditor
Posted 23 Mar