Melanoma skin cancer cells radically rewire their internal power systems to drive their spread to other parts of the body, a new study shows.
The new research suggests that reversing this change can make tumor cells less invasive. The team also identified a key molecule that orchestrates this process – knowledge that could lay the foundations for new therapeutic strategies to halt the spread of cancer.
Cancer cells’ ability to break away from the original tumor and spread to other parts of the body presents one of the greatest challenges to treating the disease. This process, called metastasis, seeds secondary tumors that grow in other organs, ultimately causing most cancer deaths.
“We’re still not targeting the secondary disease enough in the clinic, and I think we need to change this,” comments the lead author of the new study. “In our lab, we want to understand: what are the characteristics of cells that are able to metastasise? What are their weaknesses? And how do we target them?”
Melanoma skin cancer is among the quickest-spreading cancer types and is a key focus of Professor Sanz-Moreno and her laboratory’s research. If melanoma is diagnosed at an early stage before it spreads, almost all patients in the UK survive their disease for a year or more. But this survival drops to just over half once the disease has spread. The team’s work aims not only to equip us with the knowledge to better treat melanoma but also to unlock an improved understanding of how all cancers spread.
In the new study, published in Nature Communications, the team investigated how metastasising cells rewire their energy systems to move quickly and efficiently on their journey to other parts of the body.
The researchers examined migrating tumor cells in a special model system allowing movement in three dimensions – a departure from conventional systems that place cells on a flat surface that doesn’t accurately replicate how cells move through living tissue. They found that metastasising tumor cells adopt a style of movement known as rounded-amoeboid migration, where cells maintain a loose connection to their surroundings, enabling them to slither through the tissue. This requires far less energy than a common style of cell movement known as mesenchymal migration, where cells grip tightly onto their surroundings and drag themselves through their environment.
They observed that the invasive tumor cells reshape their mitochondria to suit this efficient style of movement, opting to have many, small, fragmented mitochondria that operate in a low-power mode. This is in contrast to less-invasive cells, which have large, branching networks of mitochondria that operate in a high-power mode.
“These metastatic cells are rewiring themselves to be very efficient,” explains the first author on the new paper. “They only need low levels of energy to move, which helps them to survive in the potentially stressful environments they are migrating to, where there may be a lack of nutrients or oxygen.”
Intriguingly, the team found that if they manipulate the shape of the mitochondria in their metastasising tumor cells and force them to become more joined up, the cells lose their invasive behavior. Likewise, if they make mitochondria more disconnected in non-invasive cells, the cells start to behave like metastasising tumor cells. The researchers discovered that a molecule called AMPK sits at the centre of these processes. It senses the energy requirements of the cell and also controls the cytoskeleton, which determines how the cell moves and behaves.
“That was a really surprising thing for us – we wouldn’t have imagined that changing the mitochondria could affect the cytoskeleton and vice versa.” The author explains. “By modifying these little mitochondria you create a global change, altering what the cell looks like and its whole behavior.”
https://www.nature.com/articles/s41467-023-38292-0
http://sciencemission.com/site/index.php?page=news&type=view&id=publications%2Fampk-is-a-mechano&filter=22
Skin cancer rewires its energy systems to spread more efficiently
- 666 views
- Added
Latest News
Citrullination is a key pla…
By newseditor
Posted 14 Sep
Senolytic therapy clinical…
By newseditor
Posted 14 Sep
Genetic tools probe microbi…
By newseditor
Posted 13 Sep
A secret passage for mutant…
By newseditor
Posted 11 Sep
Specialized T cells in the…
By newseditor
Posted 10 Sep
Other Top Stories
Neurogenesis throughout development and adulthood
Read more
Not all stem cells are created equal
Read more
Founder stem cells identified!
Read more
First 3D printed heart using patient's biological materials
Read more
A secretory factor involved in muscle stem cell metabolism and diff…
Read more
Protocols
D-LMBmap: a fully automated…
By newseditor
Posted 30 Sep
Genetic manipulation of Pat…
By newseditor
Posted 13 Sep
Single-nucleus RNA sequenci…
By newseditor
Posted 08 Sep
Engineering RNA export for…
By newseditor
Posted 25 Aug
ATP production from electri…
By newseditor
Posted 21 Aug
Publications
Functional architecture of…
By newseditor
Posted 04 Oct
The Nobel Prize in Physics…
By newseditor
Posted 04 Oct
Monoamines' role in islet c…
By newseditor
Posted 03 Oct
A cholinergic circuit that…
By newseditor
Posted 03 Oct
The emerging role of recept…
By newseditor
Posted 02 Oct
Presentations
Hydrogels in Drug Delivery
By newseditor
Posted 12 Apr
Lipids
By newseditor
Posted 31 Dec
Cell biology of carbohydrat…
By newseditor
Posted 29 Nov
RNA interference (RNAi)
By newseditor
Posted 23 Oct
RNA structure and functions
By newseditor
Posted 19 Oct
Posters
A chemical biology/modular…
By newseditor
Posted 22 Aug
Single-molecule covalent ma…
By newseditor
Posted 04 Jul
ASCO-2020-HEALTH SERVICES R…
By newseditor
Posted 23 Mar
ASCO-2020-HEAD AND NECK CANCER
By newseditor
Posted 23 Mar
ASCO-2020-GENITOURINARY CAN…
By newseditor
Posted 23 Mar