Turning the molecular clock back on suppresses neuroblastoma tumor growth

Turning the molecular clock back on suppresses neuroblastoma tumor growth


Researchers have found that the molecular clock may be key to treating neuroblastoma. The researchers studied patients with high expression of MYCN, known to be the major oncogenic driver of neuroblastoma. In those patients, two main components of the molecular clock were repressed—BMAL1, which oscillates to drive the clock cycle, and RORa, which activates BMAL1. This repression correlated with poor clinical outcome.  

“We were very interested in how MYCN can reprogram tumor metabolism,” said the senior author. “We found that MYCN amplification inhibits BMAL1 expression and oscillation, leading to metabolic reprograming and oncogenesis.”

Because BMAL1 and RORa suppression allowed the tumor cells to grow, the researchers wanted to know if restoring these components of the molecular clock would stop growth in neuroblastoma cells. They tested two approaches in the lab—genetic overexpression of RORa and a pharmaceutical approach using a synthetic ligand that reactivates RORa. Both techniques successfully restored BMAL1 expression and oscillation.


“Our strategy to restore BMAL1 expression also blocked tumor growth, suggesting that repression of the molecular clock is indeed oncogenic,” the author said. “We believe restoration of the molecular clock is tumor suppressive in neuroblastoma.”


The team’s research also showed that restoring BMAL1 expression and molecular clock function sensitized neuroblastoma tumors to conventional chemotherapy treatments, offering a potential future therapeutic approach.

“Our cells follow a molecular clock that controls cell metabolism, much like the body’s circadian rhythm controls sleep cycles. We know metabolic processes are really important in how tumors develop resistance to chemotherapy,” the author said. “In the future, if we can develop therapeutics that restore the molecular clock in a clinical setting, we may be able to use them in combination with standard chemotherapy to avoid treatment resistance.”

https://www.nature.com/articles/s41467-021-24196-4

http://sciencemission.com/site/index.php?page=news&type=view&id=publications%2Frestoration-of-the&filter=22

Edited

Rating

Unrated
Rating: