Researchers have identified that a gene critical to clearing up unnecessary proteins plays a role in brain development and contributes to the development of autism spectrum disorders (ASD) and schizophrenia.
The discovery, published in Neuron, provides important insight into the mechanism of both diseases--a possible step toward finding how to treat the disorders.
Cullin 3 is a core component of an E3 ubiquitin ligase responsible for the cell's clearance of proteins. Mutations of its gene CUL3 have been associated with autism and schizophrenia. However, pathologic mechanisms of CUL3 deficiency have been unclear.
"CUL3 is abundant in the brain, yet little is known of its function," said the senior author. "Here, we show that CUL3 is critical for brain development and communication between cells in the brain."
ASD is a complicated condition that includes difficulty with communication and social interaction, obsessive interests and repetitive behaviors. It affects 1 in 59 children in the United States, according to a recent report by the Centers for Disease Control. Schizophrenia affects about 1 in 100 people worldwide. However, autism and schizophrenia remain among the most mysterious disorders.
The team studied how CUL3 mutation impacts the brain in mouse models. The researchers were able to demonstrate that altering the gene in mouse models can cause similar social problems that appear in people with these disorders.
Normal mice would spend more time with a mouse over an inanimate object, the author said. But CUL3-mutant mice couldn't differentiate between a mouse and an inanimate object, showing a problem with social preference.
In another test, normal mice would spend more time with an unfamiliar mouse over a familiar one. But CUL3-mutant mice couldn't remember seeing a familiar mouse, suggesting a problem of social memory. Also, CUL3-mutant mice were more anxious than normal mice.
https://thedaily.case.edu/new-research-from-case-western-reserve-university-identifies-neurodevelopment-related-gene-deficiency/
https://www.cell.com/neuron/fulltext/S0896-6273(19)30930-4
Deletion of CUL-3 gene results in neurodevelopment deficiencies
- 5,942 views
- Added
Edited
Latest News
Humans can intermittently r…
By newseditor
Posted 04 Dec
Why young kids don't get se…
By newseditor
Posted 04 Dec
Phosphatidylinositol 3,5-bi…
By newseditor
Posted 04 Dec
Probiotic-guided CAR-T cell…
By newseditor
Posted 04 Dec
Cell atlases of the human b…
By newseditor
Posted 04 Dec
Other Top Stories
Speech and social class perception
Read more
Hydrogen peroxide in the hair could be a biomarker for some schizop…
Read more
Genes and brain circuits in chronic stress mediated lack of motivation
Read more
Cell division rate in old age slows down in humans!
Read more
How your brain processes abstract thoughts
Read more
Protocols
Cheap, cost-effective, and…
By newseditor
Posted 03 Dec
Temporally multiplexed imag…
By newseditor
Posted 02 Dec
Efficient elimination of ME…
By newseditor
Posted 01 Dec
Personalized drug screening…
By newseditor
Posted 30 Nov
Multi-chamber cardioids unr…
By newseditor
Posted 29 Nov
Publications
Behavioral and brain respon…
By newseditor
Posted 04 Dec
Toward low-cost gene therap…
By newseditor
Posted 04 Dec
The bidirectional immune cr…
By newseditor
Posted 04 Dec
Leveraging human immune org…
By newseditor
Posted 04 Dec
Single-cell long-read seque…
By newseditor
Posted 04 Dec
Presentations
Hydrogels in Drug Delivery
By newseditor
Posted 12 Apr
Lipids
By newseditor
Posted 31 Dec
Cell biology of carbohydrat…
By newseditor
Posted 29 Nov
RNA interference (RNAi)
By newseditor
Posted 23 Oct
RNA structure and functions
By newseditor
Posted 19 Oct
Posters
A chemical biology/modular…
By newseditor
Posted 22 Aug
Single-molecule covalent ma…
By newseditor
Posted 04 Jul
ASCO-2020-HEALTH SERVICES R…
By newseditor
Posted 23 Mar
ASCO-2020-HEAD AND NECK CANCER
By newseditor
Posted 23 Mar
ASCO-2020-GENITOURINARY CAN…
By newseditor
Posted 23 Mar