A new study in mice has revealed never-before-seen details about how the complicated visual network forms in them. This research could inform future research into the treatment of congenital blindness. But given the parallels between biological neural tissue and digital artificial intelligence, this research could also help software engineers develop better and more general-purpose artificial intelligences.
If you could see the weblike nature of the neurons and structures that make up the brain and sensory systems of animals, you might think it’s just a random complicated mess. But researchers such as neuroscientists are able to look at this chaos and deduce not only discrete structures, but also ascertain their functions.
“The eyes, certain parts of the brain and the neural network connecting these form the vision system. A crude analogy might be a camera connected by a wire to a screen that your conscious self can watch. But an accurate biological description of this system is extremely complicated,” said the senior author. “There is a large number of visual cortical areas involved and these are arranged in layers which form a sort of hierarchical structure. This idea is not new, but it was not known how connections between the early stages of this network, or primary areas, and areas involved in the processing of visual signals, or higher visual cortical areas, form during development. We set out to find out how this happens.”
The team studied the developing vision systems of mice. In particular they looked at areas the called cortical and thalamic regions. By seeing how networks of neurons in these regions developed in newborn mice, and when these networks became active, the team was able to describe in a more general way the mechanisms governing the growth of the vision system.
“As we recorded the increasingly dense network of connections in time, something jumped out that surprised us,” said the author. “We expected the visual network to form a lot of connections among the cortical area first, reflecting the hierarchical structure of the whole system. But in fact, parallel neural pathways from the retinas in the eyes leading up to the cortical areas form earlier than those among cortical areas. This new fact changes what we know about this area of cortical development.”
This study was done not only to satisfy curiosity, but also because fundamental research of this kind can form the foundation of future medical research which can improve peoples’ lives: in this case, the team’s hypothesis that their research in mice can likely explain visual development in primates, including humans. And this in turn could help researchers aiming to treat congenital blindness.
“There is another field of research that can learn from what we have done here as well,” said the author. “Artificial intelligence is often based on digital artificial neural networks. These are usually structured in multiple layers, which can give them complex functionality. But now that we’ve shown at least some biological neuronal systems develop parallel structures prior to layered ones, software engineers might gain inspiration from this to experiment with new design methodologies. It is conceivable this might help them in their goal of creating ever more general-purpose intelligences capable of solving a wide variety of problems.”
https://www.nature.com/articles/s41586-022-05045-w
How the visual system develops in mice
- 891 views
- Added
Latest News
How our cells kill themselves
By newseditor
Posted 27 May
AI predicts the function of…
By newseditor
Posted 27 May
Hippocampo-cortical circuit…
By newseditor
Posted 26 May
A tumor protein p63 isoform…
By newseditor
Posted 24 May
Brain signatures for chroni…
By newseditor
Posted 24 May
Other Top Stories
New approach to RNA sequencing reveals thousands of unidentified RN…
Read more
How Huntingtin protein moves across the neurons via nanotubes
Read more
Direct oxidative stress damage shortens telomeres
Read more
How the cytoplasm separates from the yolk
Read more
Singlet molecular oxygen but not kynurenine is responsible for shar…
Read more
Protocols
Designed active-site librar…
By newseditor
Posted 27 May
A microfluidics-enabled aut…
By newseditor
Posted 22 May
TomoTwin: generalized 3D lo…
By newseditor
Posted 17 May
Optimization and validation…
By newseditor
Posted 16 May
EmbryoNet: using deep learn…
By newseditor
Posted 12 May
Publications
Structural basis of NINJ1-m…
By newseditor
Posted 27 May
A general model to predict…
By newseditor
Posted 27 May
Emerging frontiers in regen…
By newseditor
Posted 27 May
Promoting regeneration whil…
By newseditor
Posted 27 May
Massively parallel base edi…
By newseditor
Posted 27 May
Presentations
Hydrogels in Drug Delivery
By newseditor
Posted 12 Apr
Lipids
By newseditor
Posted 31 Dec
Cell biology of carbohydrat…
By newseditor
Posted 29 Nov
RNA interference (RNAi)
By newseditor
Posted 23 Oct
RNA structure and functions
By newseditor
Posted 19 Oct
Posters
ASCO-2020-HEALTH SERVICES R…
By newseditor
Posted 23 Mar
ASCO-2020-HEAD AND NECK CANCER
By newseditor
Posted 23 Mar
ASCO-2020-GENITOURINARY CAN…
By newseditor
Posted 23 Mar
ASCO-2020-GENITOURINARY CAN…
By newseditor
Posted 10 Mar
ASCO-2020-GYNECOLOGIC CANCER
By newseditor
Posted 10 Mar