A protein known as Lefty pumps the brakes as human embryos begin to differentiate into the bones, soft tissues and organs that make us.
This inhibitor protein is key during the early stages of life when the fates of embryonic stem cells are determined by the Nodal signaling pathway, according to bioscientists.
The researchers have visualized for the first time the mechanism by which Nodal and Lefty interact to specify the future body plan in a mammalian embryo.
Their results appear in the journal Nature Communications.
The study shows not only how Nodal signaling molecules, known as morphogens, are held in check by Lefty but also that Nodal proteins are passed directly from cell to cell, triggering transcription of new Nodals by the recipient. At the same time, a wave of Lefty transcription is transiently triggered in the cells when they first receive Nodal, regulating the speed of the wave.
“Basically, we show that rather than gradients of protein forming and instructing cells to become different cell types, the molecules involved do not diffuse at all,” the author said. “Instead, cells relay the signal so that each cell produces the signal and passes it to its neighbor, which causes the neighbor to produce it and so on. It’s kind of like a game of telephone.”
The unique experimental model developed by the team over many years allows them to see early stages of gastrulation, during which the initial stages of differentiation happen. The circular colonies of cells bear no resemblance to embryos and follow established ethics, but the cells communicate and react in a realistic way as they differentiate into three characteristic germ layers -- the ectoderm, mesoderm and endoderm -- from the center toward the rim.
But actually visualizing the Nodal protein has, until now, been an issue. For the new study, found a way to add fluorescent tags to the Nodal protein that didn’t compromise gastrulation in any way.
“We needed to be sure that the fluorescent tag didn’t affect the function,” said the lead author. “Because the tag is so big -- essentially half of the combined molecule with the Nodal protein -- we didn’t know if it was going to affect secretion (by cells) or diffusion.”
Once assured the tag was benign, the lab began tracking Nodal’s progression for up to 42 hours in various configurations of the colony and with or without Lefty’s two human variants. They found that without Lefty’s presence, Nodal diffusion toward the colony’s center progressed much more quickly.
The lead said the ability to track individual proteins in a mammalian system could lead to discoveries about the mechanisms by which the morphogen and its inhibitor claim their territories.
Traditionally, patterns are thought to arise because some proteins diffuse faster than others, the author said. Local Nodal activity could cause production of Lefty, which diffuses farther than Nodal and limits the signal to a territory of a particular size, a theory that has not been rigorously tested.
To the researchers’ surprise, the direct observation of endogenous molecules showed no sign of Nodal diffusion. Instead, the wave that moves inward is the result of new Nodal proteins produced by each cell that then triggers its neighbor to do the same.
The lab was able to prove this is essential for the wave by creating cells that lack the Nodal protein. These cells could receive the signal but not pass it on to their neighbors.
The researchers also found that while Lefty didn’t diffuse in their gastrulation experiments, it can move over much longer range in other contexts.
“We want to understand what determines the diffusivity of the Lefty proteins in a context-dependent way,” the author said. “Is it because the two variants of human Lefty show different diffusivity and expression patterns? It’s challenging to answer this question, because they’re very similar at both DNA and amino acid levels. We will have to figure out a way to distinguish them.
“Another thing we’re interested in is to know how Nodal and Lefty cooperate with other co-factors to define the body axis,” the author said. “Where’s the head, where’s the tail, where are the left and right sides? We know Nodal works with co-receptors to do this in zebra fish, but in higher mammalian cells, the co-receptor might be fundamentally different.”
https://www.nature.com/articles/s41467-022-28149-3
http://sciencemission.com/site/index.php?page=news&type=view&id=publications%2Fnodal-is-a-short-range&filter=22
Lefty' tightens control of embryonic development
- 1,417 views
- Added
Latest News
A bacterial defense with po…
By newseditor
Posted 06 Sep
Type I interferon responses…
By newseditor
Posted 06 Sep
Cellular pathways to Alzhei…
By newseditor
Posted 06 Sep
A blood-based assay for the…
By newseditor
Posted 06 Sep
People who lack the immune…
By newseditor
Posted 06 Sep
Other Top Stories
How stress resilience-enhancing drugs preserve tissue structure and…
Read more
Electroconductive hydrogel for biomedical applications developed!
Read more
How the brain acquires essential omega-3 fatty acids
Read more
How CAG repeat interferes with DNA repair and lead to disease
Read more
How aggression-promoting brain peptide works in fruit flies
Read more
Protocols
Clinical utility of a blood…
By newseditor
Posted 06 Sep
A glia-enriched stem cell 3…
By newseditor
Posted 01 Sep
Mouse models to investigate…
By newseditor
Posted 30 Aug
A brief guide to studying e…
By newseditor
Posted 28 Aug
Single-cell EpiChem jointly…
By newseditor
Posted 24 Aug
Publications
Biallelic variants in SNUPN…
By newseditor
Posted 08 Sep
Mitochondrial membrane lipi…
By newseditor
Posted 07 Sep
Microbial production of an…
By newseditor
Posted 07 Sep
Spatially clustered type I…
By newseditor
Posted 06 Sep
Cellular communities reveal…
By newseditor
Posted 06 Sep
Presentations
Hydrogels in Drug Delivery
By newseditor
Posted 12 Apr
Lipids
By newseditor
Posted 31 Dec
Cell biology of carbohydrat…
By newseditor
Posted 29 Nov
RNA interference (RNAi)
By newseditor
Posted 23 Oct
RNA structure and functions
By newseditor
Posted 19 Oct
Posters
A chemical biology/modular…
By newseditor
Posted 22 Aug
Single-molecule covalent ma…
By newseditor
Posted 04 Jul
ASCO-2020-HEALTH SERVICES R…
By newseditor
Posted 23 Mar
ASCO-2020-HEAD AND NECK CANCER
By newseditor
Posted 23 Mar
ASCO-2020-GENITOURINARY CAN…
By newseditor
Posted 23 Mar