Researchers identify metabolic pathway essential for embryo development, thus extending knowledge of how embryos form and how to develop a safer drug regimen for pregnant women,
Much has been revealed about how a single fertilized cell, the egg, can develop into a complete organism simply via repeated cycles of cell division. However, many gaps remain in our understanding of how these dividing cells are directed to arrange themselves appropriately at each stage of embryonic development.
Researchers have now made a major step in delineating such development in the womb by showing the importance of a particular metabolic pathway for formation of the "primitive streak" in embryos. This primitive streak is a groove that maintains symmetry of the embryo and allows it to develop properly.
After fertilization, the egg repeatedly undergoes cell division, leading to a ball of cells with 2, 4, 8, 16, 32 cells, and so on. However, for development into a fully formed embryo, the ball must undergo a process called gastrulation, whereby it is transformed into a hollow, ball-like, three-layered structure. Initiation of gastrulation requires the primitive streak.
To shed light on primitive streak formation, the team applied a tool that uses clusters of mouse embryonic stem cells to mimic embryo development. By applying a wide range of drugs to these embryo mimics, they identified a number of drugs that stopped the embryonic cells from developing and differentiating normally. Some of the drugs block the functioning of the mevalonate pathway, so the team looked at whether, and how, this metabolic pathway is linked to the primitive streak.
"When we applied the drugs statins, which are extremely useful for lowering cholesterol levels, to the embryo mimics, they stopped differentiating normally into cardiomyocytes at a time that corresponds to when the primitive streak forms," study coauthor says. "Interference with the mevalonate pathway in this way resulted in a reduced survival rate of the embryos."
Equivalent experiments in zebrafish, another useful model for biological studies, confirmed that embryonic development was halted by blocking of the mevalonate pathway. The team then looked at the specific effects of this blocking. They found that it involves cessation of a form of protein modification called farnesylation; specifically that of a protein called lamin-B. This was confirmed by switching lamin-B expression on or off in the embryo mimics, which affected the expression of other protein markers specifically expressed in the primitive streak.
"This discovery of the involvement of the mevalonate pathway and lamin farnesylation in primitive streak formation greatly raises our understanding of how embryos are programmed to develop through the gastrulation stage," lead author says. "This is also important because statin drugs are widely used for purposes such as lowering cholesterol, but the use of these drugs in pregnant women is forbidden. Our results shed light on how these drugs affect embryo development, which helps understanding of the guidelines regarding statin use in pregnant women."
http://www.tmd.ac.jp/english/press-release/20170117/index.html
http://www.nature.com/articles/srep37697
Metabolic pathway essential for embryo development revealed!
- 1,365 views
- Added
Edited
Latest News
Gut bacteria may eliminate pathogens by competing for energy resources
How deep brain stimulation treats Parkinson's disease symptoms
Plasma membrane phospholipid plays a key role in epithelial cell adhesion
COVID-19, MIS-C and Kawasaki disease share same immune response
Improved cognition and mood by inducing neurogenesis via optogenetic stimulation of the brain
Other Top Stories
The cause of excess post-surgical scarring
Tetracycline combinations inhibit neuropathic pain in mice
Functional connectivity changes in brain's fatigue network from cognitive fatigue
How maternal stress triggers idiopathic preterm birth
Robust information routing by dorsal subiculum neuron
Protocols
Integrating neuroimaging and gene expression data using the imaging transcriptomics toolbox
Antibody structure prediction using interpretable deep learning
A semi-automated workflow for brain Slice Histology Alignment, Registration, and Cell Quantificat…
NanoDam identifies Homeobrain (ARX) and Scarecrow (NKX2.1) as conserved temporal factors in the D…
Spatiotemporal transcriptomic atlas of mouse organogenesis using DNA nanoball-patterned arrays
Publications
FMRP regulates GABAA receptor channel activity to control signal integration in hippocampal granu…
Host cells subdivide nutrient niches into discrete biogeographical microhabitats for gut microbes
Intestinal epithelial cell metabolism at the interface of microbial dysbiosis and tissue injury
Maturation of beta cells: lessons from in vivo and in vitro models
Plasma membrane phosphatidylinositol (4,5)-bisphosphate is critical for determination of epitheli…
Presentations
Hydrogels in Drug Delivery
Lipids
Cell biology of carbohydrate metabolism
RNA interference (RNAi)
RNA structure and functions
Posters
ASCO-2020-HEALTH SERVICES RESEARCH AND QUALITY IMPROVEMENT
ASCO-2020-HEAD AND NECK CANCER
ASCO-2020-GENITOURINARY CANCER–KIDNEY AND BLADDER
ASCO-2020-GENITOURINARY CANCER–PROSTATE, TESTICULAR, AND PENILE
ASCO-2020-GYNECOLOGIC CANCER