The scientific community knows microglia as the main immune cell of the central nervous system and as the main regulator of inflammatory processes in the brain. The role of inflammatory processes and microglia is also increasingly recognized in neurodevelopmental disorders. The investigation of the role of microglia in physiological and pathological conditions has become a dynamically developing research field in recent years.
The research group has accumulated a significant amount of knowledge in the field of microglia-neuron cell communication, and several of their publications on this subject have received international attention. They have discovered a novel form of communication established by direct contacts between microglia and the cell body of nerve cells, named somatic microglia-neuron junctions, and revealed the role of these specialized contact sites in microglia-mediated protection of injured neurons.
Although the important role played by microglia during brain development had been suggested by many previous studies, the exact cellular communication pathways enabling microglia to influence the development of neurons and the formation of neural networks in the brain has been unclear. In particular, it was not well understood how and through what types of connections developing neurons that have not yet established interaction with other neurons in the absence of synapses may recieve guidance from microglial cells to develop into complex networks in the developing neocortex.
During their investigations, the researchers used both high-resolution molecular anatomy techniques, combined light and electron microscopy, and ex vivo imaging studies. Using a multifaceted approach, the researchers proved the presence of direct connections between microglia and developing neurons both during embryonic development and after birth.
The special, dynamically changing anatomical connections between microglia and developing, immature neurons are similar to the previously discovered somatic microglial junctions in many ways, and their special molecular composition and ultrastructure enable microglia to continuously monitor and effectively influence the development and integration of neurons into complex networks,” said the first author of the work.
When the researchers inhibited the communication through the key microglial receptors that are highly enriched at these sites, the development of the normal structure of the cerebral cortex was disturbed. Therefore, microglia should be considered an important regulatory cell type of brain development via these special interaction sites and beyond.
More thorough understanding of microglial mechanisms that are required for the proper development of the brain may help to find novel therapies for neurodevelopmental disorders and other forms of brain diseases that represent an unresolved challenge worldwide,” concluded the last author of the publication.
https://www.cell.com/cell-reports/fulltext/S2211-1247(22)01201-3
http://sciencemission.com/site/index.php?page=news&type=view&id=publications%2Fmicroglial-control-of&filter=22
Microglial control of neuronal development
- 891 views
- Added
Latest News
Propionic acid protects ner…
By newseditor
Posted 28 Jan
How cells prevent harmful e…
By newseditor
Posted 28 Jan
Structured cerebellar conne…
By newseditor
Posted 28 Jan
Origins of pleasurable touc…
By newseditor
Posted 25 Jan
Unknown way cells protect t…
By newseditor
Posted 25 Jan
Other Top Stories
Mating can cause epigenetic changes that last for 300 generations
Read more
Gene therapy to treat developmental disabilities
Read more
Neurotransmitter release impairment in schizophrenia with genetic m…
Read more
Prenatal editing in preclinical model to correct lysosomal storage…
Read more
Potential role of 'junk DNA' sequence in aging, cancer
Read more
Protocols
Machine learning prediction…
By newseditor
Posted 09 Jan
Differentiating PC12 cells…
By newseditor
Posted 09 Jan
Ultrasensitive sensors reve…
By newseditor
Posted 05 Jan
In vitro-derived medium spi…
By newseditor
Posted 04 Jan
Molecular and spatial signa…
By newseditor
Posted 30 Dec
Publications
Brainstem networks construc…
By newseditor
Posted 28 Jan
The role of platelets in im…
By newseditor
Posted 28 Jan
Invariant inhibition to cal…
By newseditor
Posted 27 Jan
Birdsong neuroscience and t…
By newseditor
Posted 27 Jan
Touch neurons underlying do…
By newseditor
Posted 25 Jan
Presentations
Hydrogels in Drug Delivery
By newseditor
Posted 12 Apr
Lipids
By newseditor
Posted 31 Dec
Cell biology of carbohydrat…
By newseditor
Posted 29 Nov
RNA interference (RNAi)
By newseditor
Posted 23 Oct
RNA structure and functions
By newseditor
Posted 19 Oct
Posters
ASCO-2020-HEALTH SERVICES R…
By newseditor
Posted 23 Mar
ASCO-2020-HEAD AND NECK CANCER
By newseditor
Posted 23 Mar
ASCO-2020-GENITOURINARY CAN…
By newseditor
Posted 23 Mar
ASCO-2020-GENITOURINARY CAN…
By newseditor
Posted 10 Mar
ASCO-2020-GYNECOLOGIC CANCER
By newseditor
Posted 10 Mar