Learning a new task, mastering a musical instrument or being able to adapt to the constantly changing environment are all possible thanks to the brain’s plasticity, or its ability to modify itself by rearranging existing neural networks and forming new ones to acquire new functional properties. This also helps neural circuits to remain healthy, robust and stable.
To better understand brain plasticity, a team of researchers used mouse models to investigate how brain cells build connections with new neurons born in adult brains. Their findings, published in the journal Genes & Development, not only expand our understanding of brain plasticity but also open new possibilities for treating certain neurodevelopmental disorders and repairing injured circuits in the future.
“In this study, we wanted to identify new molecules that help new neurons build connections in the brain,” said corresponding author. “We worked with the olfactory bulb, the part of the brain that is involved in the sense of smell. In mice, the olfactory bulb is a highly plastic sensory area and has a remarkable capacity to maintain plasticity into adulthood via continuous integration of adult-born neurons. We discovered that oxytocin, a peptide, or short protein, produced in the brain, drives events that contribute to neural circuit plasticity.”
The researchers discovered that the levels of oxytocin increase in the olfactory bulb, peaking at the time the new neurons incorporate themselves into neural networks. Using viral labeling, confocal microscopy and cell-type specific RNA sequencing, the team discovered that oxytocin triggers a signaling pathway – a series of molecular events inside cells – that promotes the maturation of synapses, that is, the connections of newly integrated adult-born neurons. When the researchers eliminated the oxytocin receptor, the cells had underdeveloped synapses and impaired function.
“Importantly, we found that synapse maturation occurs by regulating the morphological development of cells and the expression of a number of structural proteins,” said the author.
“The most exciting aspect of this study is that our findings suggest that oxytocin drives development and synaptic integration of new neurons within the adult brain, directly contributing to adaptability and circuit plasticity,” said the first author.
The findings, which are relevant to all mammals, including humans, open new possibilities to improve neurological conditions. “Oxytocin is normally present in our brain, so if we understand how to turn it on or off or mobilize it, we can help keep our circuit connections healthy by promoting the growth of underdeveloped connections or strengthening new ones,” the senior author said. “Our findings also suggest that oxytocin could promote the growth of new neurons to repair damaged tissue. Further studies are needed to explore these possibilities.”
http://genesdev.cshlp.org/content/early/2022/12/07/gad.349930.122
http://sciencemission.com/site/index.php?page=news&type=view&id=publications%2Foxytocin-signaling-is&filter=22
Oxytocin drives development of neural connections in adult-born neurons
- 1,333 views
- Added
Latest News
Protein found in brain link…
By newseditor
Posted 09 Dec
Calcium acts as missing lin…
By newseditor
Posted 09 Dec
How repeated traumatic brai…
By newseditor
Posted 08 Dec
Metformin rescues neuronal…
By newseditor
Posted 08 Dec
Variants in the genome inte…
By newseditor
Posted 08 Dec
Other Top Stories
Transformative treatment for HER2-positive gastric cancer
Read more
New biosensors measure toxic drugs in cancer, arthritis, and organ…
Read more
Copper and breast cancer!
Read more
Role of shared cancer gene network in malignancy
Read more
Chemotherapy-induced sensorimotor deficits
Read more
Protocols
Brain-wide circuit-specific…
By newseditor
Posted 05 Dec
Cheap, cost-effective, and…
By newseditor
Posted 03 Dec
Temporally multiplexed imag…
By newseditor
Posted 02 Dec
Efficient elimination of ME…
By newseditor
Posted 01 Dec
Personalized drug screening…
By newseditor
Posted 30 Nov
Publications
Extracellular calcium funct…
By newseditor
Posted 09 Dec
TAF15 amyloid filaments in…
By newseditor
Posted 09 Dec
Metformin rescues migratory…
By newseditor
Posted 08 Dec
Oral magnesium prevents ace…
By newseditor
Posted 08 Dec
GDF15 is a major determinan…
By newseditor
Posted 08 Dec
Presentations
Hydrogels in Drug Delivery
By newseditor
Posted 12 Apr
Lipids
By newseditor
Posted 31 Dec
Cell biology of carbohydrat…
By newseditor
Posted 29 Nov
RNA interference (RNAi)
By newseditor
Posted 23 Oct
RNA structure and functions
By newseditor
Posted 19 Oct
Posters
A chemical biology/modular…
By newseditor
Posted 22 Aug
Single-molecule covalent ma…
By newseditor
Posted 04 Jul
ASCO-2020-HEALTH SERVICES R…
By newseditor
Posted 23 Mar
ASCO-2020-HEAD AND NECK CANCER
By newseditor
Posted 23 Mar
ASCO-2020-GENITOURINARY CAN…
By newseditor
Posted 23 Mar