On an anatomical level, the pelvis is well understood, but that knowledge starts to break down when it comes to how and when this uber-important structure takes its shape during development.
A new study from the lab is changing that. Published in Science Advances, the work shows when during pregnancy the pelvis takes shape and identifies the genes and genetic sequences that orchestrate the process. The work can one day shed light on the genetic origin of bipedalism and open the door for treatments or predictors of hip joint disorders, like hip dysplasia and hip osteoarthritis.
“This paper is really focused on what all humans share, which are these changes to the pelvis that allowed us to walk on two legs and allowed us to give birth to a large fetal head,” said the senior author on the study.
The study shows that many of the features essential for human walking and birth form around the 6- to 8-week mark during pregnancy. This includes key pelvic features unique to humans, like its curved and basin-like shape. The formation happens while bones are still cartilage so they can easily, curve, rotate, expand, and grow.
The researchers also saw that as other cartilage in the body begins to turn into bone this developing pelvic section stays as cartilage longer, so it has time to form properly.
“There appears to be a stalling that happens and this stalling allows the cartilage to still grow, which was pretty interesting to find and surprising,” the author said. “I call it a zone of protection.”
The researchers performed RNA sequencing to show which genes in the region are actively triggering the formation of the pelvis and are stalling ossification, which normally turns softer cartilage to hard bone. They identified hundreds of genes that are turned either on or off during the 6- to 8-week mark to form the ilium in the pelvis, the largest and uppermost bones of the hip with blade-like structures that curve and rotate into a basin to support walking on two legs.
Compared to chimpanzees and gorillas, the shorter and wider reorientation of our pelvic blades make it so humans don’t have to shift the mass of our weight forward and use our knuckles to walk or balance more comfortably. It also helps increase the size of the birth canal. Apes on the other hand have much narrower birth canals and more elongated ilium bones.
The researchers started the study by comparing these differences in hundreds of skeletal samples of humans, chimpanzees, and gorillas. The comparisons demonstrated the striking effects that natural selection has had on the human pelvis, the ilium in particular.
To see when the ilium and pelvic elements forming the birth canal began to take shape, the researchers examined 4- to 12-week-old embryos under a microscope with the consent of people who had legally terminated their pregnancies. The researchers then compared samples from the developing human pelvis’ with mouse models to identify the on and off switches triggering the formation.
“Walking on two legs affected our pelvic shape, which affects our disease risk later,” the senior author said. “We want to reveal that mechanism. Why does selection on the pelvis affect our later disease risk of the hip, like osteoarthritis or dysplasia. Making those connections at the molecular level will be critical.”
https://www.science.org/doi/10.1126/sciadv.abq4884
http://sciencemission.com/site/index.php?page=news&type=view&id=publications%2Fthe-developmental&filter=22
Pelvis helps humans walk upright
- 953 views
- Added
Latest News
Citrullination is a key pla…
By newseditor
Posted 14 Sep
Senolytic therapy clinical…
By newseditor
Posted 14 Sep
Genetic tools probe microbi…
By newseditor
Posted 13 Sep
A secret passage for mutant…
By newseditor
Posted 11 Sep
Specialized T cells in the…
By newseditor
Posted 10 Sep
Other Top Stories
Regulating lysosome biogenesis
Read more
How cells control protein synthesis under nutritional constraints
Read more
How RNA splicing defects contribute to Alzheimer's disease
Read more
How proteins are inserted into the mitochondrial outer membrane
Read more
A mechanism to degrade autophagosome in plants
Read more
Protocols
D-LMBmap: a fully automated…
By newseditor
Posted 30 Sep
Genetic manipulation of Pat…
By newseditor
Posted 13 Sep
Single-nucleus RNA sequenci…
By newseditor
Posted 08 Sep
Engineering RNA export for…
By newseditor
Posted 25 Aug
ATP production from electri…
By newseditor
Posted 21 Aug
Publications
Alteration in the chromatin…
By newseditor
Posted 30 Sep
Identification of genes req…
By newseditor
Posted 29 Sep
Mitochondrial degradation:…
By newseditor
Posted 29 Sep
The promise of new anti-obe…
By newseditor
Posted 29 Sep
Timing of lifespan influenc…
By newseditor
Posted 16 Sep
Presentations
Hydrogels in Drug Delivery
By newseditor
Posted 12 Apr
Lipids
By newseditor
Posted 31 Dec
Cell biology of carbohydrat…
By newseditor
Posted 29 Nov
RNA interference (RNAi)
By newseditor
Posted 23 Oct
RNA structure and functions
By newseditor
Posted 19 Oct
Posters
A chemical biology/modular…
By newseditor
Posted 22 Aug
Single-molecule covalent ma…
By newseditor
Posted 04 Jul
ASCO-2020-HEALTH SERVICES R…
By newseditor
Posted 23 Mar
ASCO-2020-HEAD AND NECK CANCER
By newseditor
Posted 23 Mar
ASCO-2020-GENITOURINARY CAN…
By newseditor
Posted 23 Mar