The early stages of embryonic development contain many of life’s mysteries. Unlocking these mysteries can help us better understand early development and birth defects, and help develop new regenerative medicine treatments.
Researchers have characterised a critical time in mammalian embryonic development using powerful and innovative imaging techniques, with their work published in Nature Communications.
“Just a few days into the journey of embryogenesis, when turning into 16 cells, the embryo must make its first difficult decision - which of its cells will give rise to the embryo or will become extra-embryonic tissue, for example, placenta,” explained the lead researcher.
In this study, the research team has discovered how this decision-making process is facilitated by capturing the inner organisation of single cells of the early embryo.
“Ribonucleic acid, RNA, plays a key role here. At the 16-cell stage, the different subtypes of RNA, named rRNAs, mRNAs and tRNAs, are sorted to the two ends of a cell called apical and basal side. The distribution of RNA subtypes determines what the next generation of cells of the embryo will become,” the author said.
Interestingly, while most mRNAs and tRNAs remain parked at the apical side, most rRNA molecules travel down to the basal side hitchhiking on organelles called lysosomes. Even though retaining less overall RNA content, the apical sides of outer 16-cell stage cells contain the full collection of RNAs and other factors required for protein production.
The crowded basal side, however, is occupied predominantly with rRNAs. Daughter cells obtaining the more active protein factories of the apical side, are more transformable and specialise into the future placenta. The daughter cells which retain their potential to still become any type of cell of the adult organism, called pluripotency, receive the less translationally active bulk of rRNA.
This decision and many like it, which is known as cell fate, are important in development as it determines how these early cells reach their final cell type, such as skin cells, heart muscle cells and brain cells. For regenerative medicine, being able to orchestrate cell fate opens up the capacity to generate new stem cell-based treatments for a number of diseases and conditions.
“As in real life, cells can influence the direction of their own future by getting organised early. Our research may open new ways to predict and direct cell fate decisions,” the author said.
https://www.nature.com/articles/s41467-023-38436-2
http://sciencemission.com/site/index.php?page=news&type=view&id=publications%2Fapicobasal-rna&filter=22
RNA-guided mechanisms driving cell fate
- 1,842 views
- Added
Latest News
Brain cells that plan where…
By newseditor
Posted 12 Sep
A common fatty acid may hel…
By newseditor
Posted 12 Sep
Transcription factor functi…
By newseditor
Posted 12 Sep
Blood platelet score predic…
By newseditor
Posted 12 Sep
Mouse skin made transparent…
By newseditor
Posted 12 Sep
Other Top Stories
Gut's microbial community shown to influence host gene expression
Read more
Nitrogen is a key driver for gut health
Read more
Neutralization mechanism of a highly potent antibody against Zika v…
Read more
Staph uses nitric oxide enzyme to colonize noses
Read more
How Zika virus attacks the developing human brain
Read more
Protocols
Modeling the atrioventricul…
By newseditor
Posted 11 Sep
Modeling the atrioventricul…
By newseditor
Posted 11 Sep
Fully defined NGN2 neuron p…
By newseditor
Posted 10 Sep
Clinical utility of a blood…
By newseditor
Posted 06 Sep
A glia-enriched stem cell 3…
By newseditor
Posted 01 Sep
Publications
Clinical sequelae of gut mi…
By newseditor
Posted 13 Sep
Neuroimmune interactions in…
By newseditor
Posted 13 Sep
Metabolism and HSC fate: wh…
By newseditor
Posted 13 Sep
Predictive grid coding in t…
By newseditor
Posted 12 Sep
Vaginal Lactobacillus fatty…
By newseditor
Posted 12 Sep
Presentations
Hydrogels in Drug Delivery
By newseditor
Posted 12 Apr
Lipids
By newseditor
Posted 31 Dec
Cell biology of carbohydrat…
By newseditor
Posted 29 Nov
RNA interference (RNAi)
By newseditor
Posted 23 Oct
RNA structure and functions
By newseditor
Posted 19 Oct
Posters
A chemical biology/modular…
By newseditor
Posted 22 Aug
Single-molecule covalent ma…
By newseditor
Posted 04 Jul
ASCO-2020-HEALTH SERVICES R…
By newseditor
Posted 23 Mar
ASCO-2020-HEAD AND NECK CANCER
By newseditor
Posted 23 Mar
ASCO-2020-GENITOURINARY CAN…
By newseditor
Posted 23 Mar