Nerve cells need a lot of energy and oxygen. They receive both through the blood. This is why nerve tissue is usually crisscrossed by a large number of blood vessels. But what prevents neurons and vascular cells from getting in each other's way as they grow? Researchers have identified a mechanism that takes care of this. The results have now appeared in the journal Neuron.
Nerve cells are extremely hungry. About one in five calories that we consume through food goes to our brain. This is because generating voltage pulses (the action potentials) and transmitting them between neurons is very energy-intensive. For this reason, nerve tissue is usually crisscrossed by numerous blood vessels. They ensure a supply of nutrients and oxygen.
During embryonic development, a large number of vessels sprout in the brain and spinal cord, but also in the retina of the eye. Additionally, masses of neurons are formed there, which network with each other and with structures such as muscles and organs. Both processes have to be considerate of each other so as not to get in each other's way. "We have identified a new mechanism that ensures this," explains the senior author.
"The appearance of blood vessels in the spinal cord begins in the animals about 8.5 days after fertilization," the author says. "Between days 10.5 and 12.5, however, blood vessels do not grow in all directions. This is despite the fact that large amounts of growth-promoting molecules are present in their environment during this time. Instead, during this time, numerous nerve cells - the motor neurons - migrate from their place of origin in the spinal cord to their final position. There, they then form extensions called axons that lead from the spine to the various targeting muscles."
This means that the motor neurons self-organize and grow at the time that blood vessels do not grow towards them. Only then after, do the vessels begin to sprout again. "The whole thing resembles a carefully choreographed dance," explains the doctoral student. "In the course of this, each partner takes care not to get in the other's way."
But how is this dance coordinated? Apparently, by the motor neurons shouting a "stop, now it's my turn" message to the vascular cells. To do this, they use a protein that they release into their environment - semaphorin 3C (Sema3C). It diffuses to the vascular cells and docks there at a receptor called PlexinD1 - in a sense, this is the ear for which the molecular message is intended.
"When we stop the production of Sema3C in neurons in mice, blood vessels form prematurely in the region where these neurons are located," explains the senior author. "This prevents the axons of the neurons from developing properly - they are prevented from doing so by the vessels." The researchers achieved a similar effect when they experimentally stopped the formation of PlexinD1 in the vascular cells: Since these were now deaf to the Sema3C signal from the neurons, they did not stop growing but continued to sprout.
The results document the importance of coordinated operation of the two processes during embryonic development. These findings could also contribute to a better understanding of certain diseases, such as retinal defects caused by strong and uncontrolled vessel growth. The use of the newly discovered mechanism may also potentially help in regenerating destroyed brain areas, for example after a spinal cord injury, in the long term.
https://www.cell.com/neuron/fulltext/S0896-6273(22)01078-9
http://sciencemission.com/site/index.php?page=news&type=view&id=publications%2Fendothelial-plexind1&filter=22
Spinal cord vascularization during motor neuron development
- 858 views
- Added
Latest News
Citrullination is a key pla…
By newseditor
Posted 14 Sep
Senolytic therapy clinical…
By newseditor
Posted 14 Sep
Genetic tools probe microbi…
By newseditor
Posted 13 Sep
A secret passage for mutant…
By newseditor
Posted 11 Sep
Specialized T cells in the…
By newseditor
Posted 10 Sep
Other Top Stories
Missing step in exocytosis unraveled!
Read more
Structure of LSD attached to a brain cell serotonin receptor revealed!
Read more
Reproductive 'traffic cop' identified!
Read more
Blocking a critical enzyme helps to mitigate diseases associated wi…
Read more
Organelle distribution mechanism during mitosis!
Read more
Protocols
Genetic manipulation of Pat…
By newseditor
Posted 13 Sep
Single-nucleus RNA sequenci…
By newseditor
Posted 08 Sep
Engineering RNA export for…
By newseditor
Posted 25 Aug
ATP production from electri…
By newseditor
Posted 21 Aug
Labeling PIEZO2 activity in…
By newseditor
Posted 20 Aug
Publications
Timing of lifespan influenc…
By newseditor
Posted 16 Sep
Transformer-based biomarker…
By newseditor
Posted 16 Sep
Somatic variants of MAP3K3…
By newseditor
Posted 16 Sep
The NLRP3 inflammasome and…
By newseditor
Posted 15 Sep
Targeting the metabolism of…
By newseditor
Posted 15 Sep
Presentations
Hydrogels in Drug Delivery
By newseditor
Posted 12 Apr
Lipids
By newseditor
Posted 31 Dec
Cell biology of carbohydrat…
By newseditor
Posted 29 Nov
RNA interference (RNAi)
By newseditor
Posted 23 Oct
RNA structure and functions
By newseditor
Posted 19 Oct
Posters
A chemical biology/modular…
By newseditor
Posted 22 Aug
Single-molecule covalent ma…
By newseditor
Posted 04 Jul
ASCO-2020-HEALTH SERVICES R…
By newseditor
Posted 23 Mar
ASCO-2020-HEAD AND NECK CANCER
By newseditor
Posted 23 Mar
ASCO-2020-GENITOURINARY CAN…
By newseditor
Posted 23 Mar