For the first time, researchers have mapped the complete trajectory of placental development, helping shed new light on why pregnancy disorders happen.
Researchers have created an in-depth picture of how the placenta develops and communicates with the uterus. This study is part of the Human Cell Atlas initiative1 that is mapping every cell type in the human body.
The paper, published in Nature, details new information that was not possible to gain through previous methods and compares the findings to placental organoids, ‘mini-placentas’, that can be grown in the laboratory. This research informs and enables the development of experimental models of the human placenta.
The placenta is a temporary organ built by the foetus that facilitates vital functions such as foetal nutrition, oxygen and gas exchange, and protects against infections.
The formation and embedding of the placenta into the uterus, known as placentation, is crucial for a successful pregnancy. Understanding normal and disordered placentation at a molecular level can help answer questions about poorly understood disorders that include miscarriages, stillbirth, and pre-eclampsia.
During its development, the placenta forms tree-like structures that attach to the uterus, and the outer layer of cells, called trophoblast, migrate through the uterine wall, transforming the maternal blood vessels to establish a supply line for oxygen and nutrients.
In new research, scientists built on previous studies investigating the early stages of pregnancy and applied cutting-edge single-cell genomics and spatial transcriptomics technologies to a rare historical set of samples, capturing the process of placental development in unprecedented detail. These genomic techniques allowed researchers to see all of the cell types involved and how trophoblast cells communicate with the maternal uterine environment around them.
The team uncovered the full trajectory of trophoblast development, suggesting what could go wrong in disease and describing the involvement of multiple populations of cells, such as maternal immune and vascular cells.
The team also compared these results to placental trophoblast organoids, sometimes called ‘mini-placentas’, that are grown in the lab. They found that most of the cells identified in the tissue samples can be seen in these organoid models. Some later populations of trophoblast are not seen and are likely to form in the uterus only after receiving signals from maternal cells.
The team focussed on the role of one understudied population of maternal immune cells known as macrophages. They also discovered that other maternal uterine cells release communication signals that regulate placental growth.
The insights from this research can start to piece together the unknowns about this stage of pregnancy. The new understanding will help in the development of effective lab models to study placental development and facilitate new ways to diagnose, prevent, and treat pregnancy disorders.
A co-first author said: “Despite the placenta being a vital organ that plays an important role in everyone’s life, its development is poorly understood. Although we have previously seen how the structural cells of the placenta, trophoblast cells, attach and start to travel through the maternal uterus, the existing resources and models have limited further understanding. For the first time, we have been able to draw the full picture of how the placenta develops and describe in detail the cells involved in each of the crucial steps. This new level of insight can help us improve laboratory models to continue investigating pregnancy disorders, which cause illness and death worldwide.”
Co-senior author said: “Using a systems biology approach, this work captures and describes the specialised placental extravillous trophoblast cells as they implant into the maternal uterus during early pregnancy in humans. It provides an essential resource that will help improve our understanding of the maternal-foetal interactions that are critical for a successful pregnancy. Our knowledge about early placentation in humans is limited. Only with the combination of expertise from computational biology, human reproduction, organoids and stem cell model systems, and with the use of historical and rare pregnant hysterectomy samples, has it been possible to shed light on the processes occurring during this critical time that determines pregnancy outcome.”
Another co-senior author said: “Studying pregnancy in humans is difficult, but is necessary if we are to help prevent and treat disorders that arise throughout gestation. This research is unique as it was possible to use rare historical samples that encompassed all the stages of placentation occurring deep inside the uterus. We are glad to have created this open-access cell atlas to ensure that the scientific community can use our research to inform future studies.”
Another co-senior author said: “Successful placental implantation is an important step in pregnancy, and many pregnancy disorders, such as pre-eclampsia, can be linked to issues in its development. Insights from our research show that our previous understanding of placental implantation was incomplete and that the maternal uterine cells release communication signals to encourage placental growth. Understanding the communication signals through spatial data gives us a fuller picture of how the two organs, the placenta and the uterus, work together highlighting where issues could arise in disease.”
https://www.nature.com/articles/s41586-023-05869-0
http://sciencemission.com/site/index.php?page=news&type=view&id=publications%2Fspatial-multiomics-map&filter=22
Trophoblast development in early pregnancy
- 608 views
- Added
Latest News
How the gut microbiome resp…
By newseditor
Posted 08 Jun
Noncanonical cleavage mecha…
By newseditor
Posted 07 Jun
Reversing autoreactivity in…
By newseditor
Posted 07 Jun
Mapping metabolic fluxes in…
By newseditor
Posted 07 Jun
Regulation of fast twitch m…
By newseditor
Posted 07 Jun
Other Top Stories
New DNA repair factors identified!
Read more
Discovering dominant tumor immune archetypes in a pan-cancer census
Read more
Characterization of translocation renal cell carcinoma
Read more
How obesity might lead to cancer
Read more
Matrix mechanics regulates epithelial defence against cancer
Read more
Protocols
Using mass spectrometry ima…
By newseditor
Posted 07 Jun
Low-threshold, high-resolut…
By newseditor
Posted 05 Jun
Optical opening of the bloo…
By newseditor
Posted 04 Jun
Protocol to establish a gen…
By newseditor
Posted 03 Jun
Metaboverse enables automat…
By newseditor
Posted 02 Jun
Publications
The stress granule protein…
By newseditor
Posted 07 Jun
Revitalizing myocarditis tr…
By newseditor
Posted 07 Jun
Bioengineered particles exp…
By newseditor
Posted 07 Jun
Ketone bodies promote strok…
By newseditor
Posted 07 Jun
Sustained alternate-day fas…
By newseditor
Posted 07 Jun
Presentations
Hydrogels in Drug Delivery
By newseditor
Posted 12 Apr
Lipids
By newseditor
Posted 31 Dec
Cell biology of carbohydrat…
By newseditor
Posted 29 Nov
RNA interference (RNAi)
By newseditor
Posted 23 Oct
RNA structure and functions
By newseditor
Posted 19 Oct
Posters
ASCO-2020-HEALTH SERVICES R…
By newseditor
Posted 23 Mar
ASCO-2020-HEAD AND NECK CANCER
By newseditor
Posted 23 Mar
ASCO-2020-GENITOURINARY CAN…
By newseditor
Posted 23 Mar
ASCO-2020-GENITOURINARY CAN…
By newseditor
Posted 10 Mar
ASCO-2020-GYNECOLOGIC CANCER
By newseditor
Posted 10 Mar