Scientists have developed a molecular "clock" that could reshape how pediatricians measure and monitor childhood growth and potentially allow for an earlier diagnosis of life-altering development disorders.
The research, published in PNAS, describes how the addition of chemical tags to DNA over time can potentially be used to screen for developmental differences and health problems in children.
It is the first study to describe a method specifically designed for children, called the Pediatric-Buccal-Epigenetic (PedBE) clock, which measures chemical changes to determine the biological age of a child's DNA.
Small chemical changes to DNA, known as epigenetic changes, alter how genes are expressed in certain tissues and cells. Some of these changes happen as a person ages and others may be in response to a person's environment or life experiences.
In adults, these patterns of epigenetic changes are well established. They can be used to accurately predict a person's age from a DNA sample or, if a person's epigenetic age differs from their actual age, it can point differences in health, including age-related diseases and early mortality.
"We have a good idea how these DNA changes occur in adults, but until now we didn't have a tool that was specific for children," says senior author of study. "These DNA changes occur at very different rates in kids and so we adapted this technique for younger ages."
The PedBE clock was developed using DNA methylation profiles from 1,032 healthy children whose ages ranged from a few weeks old to 20 years. The researchers found 94 different sites in the genome that, when tested together, could accurately predict a child's age to within about four months. The team also found that children who spent longer in the womb showed an accelerated rate of DNA change by three months, demonstrating that this tool could be used to indicate an infant's developmental stage. The analysis can be done cheaply and efficiently on cells collected from a cheek swab.
"This powerful and easy-to-use tool could be used by clinicians to identify why some children aren't meeting early milestones and potentially diagnose children with developmental disorders earlier in life," says first author on the study. "This would enable doctors and pediatricians to intervene sooner in a child's life leading to better outcomes for kids."
In a small pilot study, the researchers also found that children with autism spectrum disorder (ASD) showed a higher PedBE "age" than those considered to be developing typically, suggesting that the clock could be used to screen for ASD.
"The fact that our pediatric clock was able to distinguish between typically developing children and those with autism in this small experiment demonstrates the powerful potential of this tool," says the senior author. "Although more research is needed to confirm this, these results show that the PedBE clock could be an important factor in evaluating how children develop."
The researchers made the tool freely available along with the publication of this study so other research teams are able to use and experiment with the tool right away.
https://www.pnas.org/content/early/2019/10/09/1820843116
DNA methylation test to measure developmental age of children in health and disease
- 1,939 views
- Added
Edited
Latest News
Fast, fully automated software constructs accurate models of protein structure
Plasma MT-DNA test identifies COVID-19 patients at high risk of severe disease
Restricted diet and glucose uptake in the brain lead to longer life
Pixelated chemical displays offer versatile liquid handling
Cells mechanical forces linked to immune system
Other Top Stories
Paternal grandfather's access to food predicts all-cause and cancer mortality in grandsons
Neurons in the brain work as a team to guide movement of arms, hands
Membrane protrusions in activating cancer signals!
Gut microbiome may affect some anti-diabetes drugs
Three different responses to a painful stimulus take place simultaneously
Protocols
Dual-Angle Protocol for Doppler Optical Coherence Tomography to Improve Retinal Blood Flow Measur…
Detection of protein SUMOylation in vivo
In vivo analysis of protein sumoylation induced by a viral protein: Detection of HCMV pp71-induce…
Determination of SUMOylation sites
miR-Selection 3'UTR Target Selection Kit
Publications
DeepTracer for fast de novo cryo-EM protein structure modeling and special studies on CoV-related…
Circulating mitochondrial DNA is an early indicator of severe illness and mortality from COVID-19
Neural correlates of shared sensory symptoms in autism and attention-deficit/hyperactivity disorder
Increasing neuronal glucose uptake attenuates brain aging and promotes life span under dietary re…
Graphene: An Antibacterial Agent or a Promoter of Bacterial Proliferation?
Presentations
Homeostasis
PLANT MITOCHONDRIAL BIOLOGY
Photosynthesis
Endocrine Disorders
THE PITUITARY GLAND
Posters
ACMT 2020 Annual Scientific Meeting Abstracts - New York, NY
Abstracts from the 2020 Annual Scientific Meeting of the British and Irish Hypertension Society (…
ACNP 58th Annual Meeting: Poster Session III
ACNP 58th Annual Meeting: Poster Session II
ACNP 58th Annual Meeting: Poster Session I