With each movement, the baby is developing its sensorimotor system, which it will later use to perform sequential movements. The sensorimotor system lets a person control muscles, movement and coordination.
Researchers studying these “spontaneous” newborn movements and comparing them to babies a few months older found patterns of muscle interaction developing based on the newborns’ exploratory behavior.
“Previous research into sensorimotor development has focused on kinematic properties, muscle activities which cause movement in a joint or a part of the body,” said the author.
“However, our study focused on muscle activity and sensory input signals for the whole body. By combining a musculoskeletal model and neuroscientific method, we found that spontaneous movements, which seem to have no explicit task or purpose, contribute to coordinated sensorimotor development,” the author said in a university news release.
For the study, the researchers used motion capture technology to record the joint movements of 12 healthy babies under 10 days of age as well as 10 infants who were about 3 months old.
The researchers used a computer model to estimate the babies’ muscle activity and sensory signals. Computer algorithms helped them analyze features of the interaction in both the space and time between input signals and muscle activity.
“We were surprised that during spontaneous movement, infants’ movements ‘wandered’ and they pursued various sensorimotor interactions,” the author said. He noted that it is often assumed that sensorimotor development depends on repeated interactions, "meaning the more you do the same action the more likely you are to learn and remember it.”
But the investigators found that infants appeared to develop their own sensorimotor system based on explorational behavior or curiosity, not just repeating the same action, but a variety of actions.
“In addition to this, our findings provide a conceptual linkage between early spontaneous movements and spontaneous neuronal activity,” the author explained.
These results support the theory that babies can acquire synchronized muscle activities and sensory inputs through spontaneous whole-body movements without a specific purpose, the study authors noted. Even in their "wandering," the babies showed an increase in coordinated whole-body movements.
The older infants had more common patterns and movements compared to the newborns' random movements, the findings showed.
Knowing how the sensorimotor system develops could be used to better understand the origin of human movement and to diagnose developmental disorders, such as cerebral palsy, earlier.
Scientists know from past research that human and animal movement involves a small set of primitive muscular control patterns, which are typically seen in cyclic or task-specific movements, like walking or reaching.
The author plans to study how sensorimotor wandering affects later development, such as walking and reaching, along with more complex behaviors and higher thinking functions.
“My big goal through my research is to understand the underlying mechanisms of early motor development and to find knowledge that will help to promote baby development,” the author said.
The report was published in the Proceedings of the National Academy of Sciences.
https://www.pnas.org/doi/10.1073/pnas.2209953120
http://sciencemission.com/site/index.php?page=news&type=view&id=publications%2Fopen-ended-movements&filter=22
Newborns' 'Random' Body Movements Are Helping Them Learn
- 851 views
- Added
Latest News
Defective myelin promotes A…
By newseditor
Posted 09 Jun
NAD+ metabolic enzyme's rol…
By newseditor
Posted 09 Jun
Viruses such as SARS-CoV-2…
By newseditor
Posted 09 Jun
A pair of brain regions pro…
By newseditor
Posted 09 Jun
How the gut microbiome resp…
By newseditor
Posted 08 Jun
Other Top Stories
The metastatic spread of breast cancer accelerates during sleep
Read more
Breast duct immunotoxin treatment for early breast cancer
Read more
Targeting cancer-associated fibroblasts to treat esophageal cancer
Read more
How tumors make immune cells promote cancer growth
Read more
Activation of a glycolytic enzyme in the metastasis of pancreatic c…
Read more
Protocols
Hardwiring tissue-specific…
By newseditor
Posted 08 Jun
Using mass spectrometry ima…
By newseditor
Posted 07 Jun
Low-threshold, high-resolut…
By newseditor
Posted 05 Jun
Optical opening of the bloo…
By newseditor
Posted 04 Jun
Protocol to establish a gen…
By newseditor
Posted 03 Jun
Publications
Myelin dysfunction drives a…
By newseditor
Posted 09 Jun
Steroid receptor coactivato…
By newseditor
Posted 09 Jun
Taurine linked with healthy…
By newseditor
Posted 09 Jun
SARS-CoV-2 infection and vi…
By newseditor
Posted 09 Jun
Cancer-cell-derived fumarat…
By newseditor
Posted 09 Jun
Presentations
Hydrogels in Drug Delivery
By newseditor
Posted 12 Apr
Lipids
By newseditor
Posted 31 Dec
Cell biology of carbohydrat…
By newseditor
Posted 29 Nov
RNA interference (RNAi)
By newseditor
Posted 23 Oct
RNA structure and functions
By newseditor
Posted 19 Oct
Posters
ASCO-2020-HEALTH SERVICES R…
By newseditor
Posted 23 Mar
ASCO-2020-HEAD AND NECK CANCER
By newseditor
Posted 23 Mar
ASCO-2020-GENITOURINARY CAN…
By newseditor
Posted 23 Mar
ASCO-2020-GENITOURINARY CAN…
By newseditor
Posted 10 Mar
ASCO-2020-GYNECOLOGIC CANCER
By newseditor
Posted 10 Mar