If you’ve ever had the feeling that your elementary school kids were “smarter” than you—or at least capable of picking up new information and skills faster—a new study in Current Biology suggests you’re absolutely right. The new study also offers a reason: kids and adults exhibit differences in a brain messenger known as GABA, which stabilizes newly learned material.
“Our results show that children of elementary school age can learn more items within a given period of time than adults, making learning more efficient in children,” said the senior author.
Their findings showed that children have a rapid boost of GABA during visual training that lasts after training ends. That’s in marked contrast to the concentrations of GABA in adults, which stayed constant. The findings suggest that children’s brains respond to training in a way that allows them to more quickly and efficiently stabilize new learning.
“It is often assumed that children learn more efficiently than adults, although the scientific support for this assumption has, at best, been weak, and, if it is true, the neuronal mechanisms responsible for more efficient learning in children are unclear,” the author said.
Differences in GABA were one obvious place to look for answers. While previous studies already had, the researchers noted that GABA in kids had only been measured at one time-point. It also wasn’t measured at a time that had any special significance in terms of learning.
So, they set out in the new study to see how GABA levels change before, during, and after learning. They also wanted to see how that differed between kids and adults.
The study examined visual learning in elementary school age children and adults using behavioral and state-of-the-art neuroimaging techniques. It found that visual learning triggered an increase of GABA in children's visual cortex, the brain area that processes visual information. That GABA boost also persisted for several minutes after training ended.
What they saw in adults that were offered the same visual training was notably different. In adults, there were no changes in GABA whatsoever.
The discovery predicts that training on new items rapidly increases the concentration of GABA in children and allows the learning to be rapidly stabilized. Further experiments also supported this.
“In subsequent behavioral experiments, we found that children indeed stabilized new learning much more rapidly than adults, which agrees with the common belief that children outperform adults in their learning abilities,” says another author. “Our results therefore point to GABA as a key player in making learning efficient in children.”
The findings suggest that children are likely to acquire new knowledge and skills more rapidly than adults, they say. It should add further encouragement for teachers and parents to give children many opportunities to acquire new skills, whether that’s learning their times tables or riding a bike.
The findings also may change neuroscientists’ conception of brain maturity in children.
“Our results imply that children exhibit highly efficient inhibitory, GABAergic processing in spite of inhibitory failures that have been observed in other domains such as cognitive control or attention,” the author said. “This implies that GABAergic processing involved in different aspects of cognitive function might mature at different speeds.”
“Although children’s brains are not yet fully matured and many of their behavioral and cognitive functions are not as efficient as in adults, children are not, in general, outperformed in their abilities by adults,” the senior author added. “On the contrary, children are, at least in some domains such as visual learning, superior in their abilities to adults.”
They say such differences in maturation rates between brain regions and functions should be examined in detail in future studies. They also want to explore GABA responses in other types of learning, such as reading and writing.
https://www.cell.com/current-biology/fulltext/S0960-9822(22)01629-3
http://sciencemission.com/site/index.php?page=news&type=view&id=publications%2Fefficient-learning-in&filter=22
Why children learn more quickly than adults?
- 1,212 views
- Added
Edited
Latest News
Why young kids don't get se…
By newseditor
Posted 04 Dec
Phosphatidylinositol 3,5-bi…
By newseditor
Posted 04 Dec
Probiotic-guided CAR-T cell…
By newseditor
Posted 04 Dec
Cell atlases of the human b…
By newseditor
Posted 04 Dec
A sperm-specific transporte…
By newseditor
Posted 02 Dec
Other Top Stories
How some individuals with obesity can lose weight and keep it off
Read more
Decoding obesity in the brainstem
Read more
Better blood sugar control in type I diabetes may limit brain damage
Read more
Sensory nerves regulate fat functions
Read more
Splicing factor loss induces alpha cells to produce insulin
Read more
Protocols
Cheap, cost-effective, and…
By newseditor
Posted 03 Dec
Temporally multiplexed imag…
By newseditor
Posted 02 Dec
Efficient elimination of ME…
By newseditor
Posted 01 Dec
Personalized drug screening…
By newseditor
Posted 30 Nov
Multi-chamber cardioids unr…
By newseditor
Posted 29 Nov
Publications
Behavioral and brain respon…
By newseditor
Posted 04 Dec
Toward low-cost gene therap…
By newseditor
Posted 04 Dec
The bidirectional immune cr…
By newseditor
Posted 04 Dec
Leveraging human immune org…
By newseditor
Posted 04 Dec
Single-cell long-read seque…
By newseditor
Posted 04 Dec
Presentations
Hydrogels in Drug Delivery
By newseditor
Posted 12 Apr
Lipids
By newseditor
Posted 31 Dec
Cell biology of carbohydrat…
By newseditor
Posted 29 Nov
RNA interference (RNAi)
By newseditor
Posted 23 Oct
RNA structure and functions
By newseditor
Posted 19 Oct
Posters
A chemical biology/modular…
By newseditor
Posted 22 Aug
Single-molecule covalent ma…
By newseditor
Posted 04 Jul
ASCO-2020-HEALTH SERVICES R…
By newseditor
Posted 23 Mar
ASCO-2020-HEAD AND NECK CANCER
By newseditor
Posted 23 Mar
ASCO-2020-GENITOURINARY CAN…
By newseditor
Posted 23 Mar