A new genetic risk factor for Motor Neurone Disease (MND), which if treated could halt or prevent the degenerative condition, has been identified in so-called 'junk DNA' by scientists. The newly discovered genetic changes are present in up to one percent of MND patients.
The pioneering research, published in the journal Cell Reports, focused on genetic mutations in non-coding DNA, often known as junk DNA because it does not directly encode protein sequences. Non-coding DNA makes up more than 99 per cent of the human genome, but currently is relatively unexplored.
This research includes new methods for studying mutations in non-coding DNA which could be applied to other diseases. The authors identify disease-associated variation within CAV1/CAV2 enhancers, which replicate in an independent cohort. Discovered enhancer mutations reduce CAV1/CAV2 expression and disrupt MLRs in patient-derived cells, and CRISPR-Cas9 perturbation proximate to a patient mutation is sufficient to reduce CAV1/CAV2 expression in neurons.
Experts also found that an existing neuroprotective drug developed at the University of California San Diego (UCSD) called SynCav1 could help MND patients carrying the newly discovered genetic mutation.
MND, or Amyotrophic Lateral Sclerosis (ALS) as it is also known, is a disorder that affects the nerves - motor neurons - in the brain and spinal cord that form the connection between the nervous system and muscles to enable movement of the body. The messages from these nerves gradually stop reaching the muscles, leading them to weaken, stiffen and eventually waste.
The progressive disease affects a patient's ability to walk, talk, use their arms and hands, eat and breathe. Approximately 5,000 people in the UK and 30,000 people in the US are currently living with MND, with numbers expected to rise.
The lead Author of the Study said: "Until now scientists have never systematically examined non-coding or junk DNA in relation to the development of MND.
"Not only have we identified a mutation in junk DNA which puts people at risk of developing a certain form of the MND, but we have also found that by targeting the mutated gene with the established neuroprotective drug called SynCav1, it might be possible to halt or potentially prevent the disease progressing in those patients.
"This is a significant breakthrough in terms of genetic risk factors driving personalised medicine for MND patients."
https://www.cell.com/cell-reports/fulltext/S2211-1247(20)31445-5
http://sciencemission.com/site/index.php?page=news&type=view&id=publications%2Frare-variant-burden&filter=22
Enhancer mutation in junk DNA linked to ALS
- 452 views
- Added
Edited
Latest News
Cells mechanical forces linked to immune system
Characterization of a new Leishmania major strain for use in a controlled human infection model
Stress granules do not suppress mRNA translation!
How the brain paralyzes you while you sleep
Strong link between gut microbes, diet and health in humans
Other Top Stories
Alcohol exposure during pregnancy affects multiple generations
Dysregulation of miRNA-9 in a Subset of Schizophrenia Patient-Derived Neural Progenitor Cells
A new secret to the miracle of breast milk
Decreased good cholesterol and increased inflammation with sleep loss
Loneliness and isolation linked to heightened risk of heart disease/stroke
Protocols
Dual-Angle Protocol for Doppler Optical Coherence Tomography to Improve Retinal Blood Flow Measur…
Detection of protein SUMOylation in vivo
In vivo analysis of protein sumoylation induced by a viral protein: Detection of HCMV pp71-induce…
Determination of SUMOylation sites
miR-Selection 3'UTR Target Selection Kit
Publications
Mechanical Stiffness Controls Dendritic Cell Metabolism and Function
Characterization of a new Leishmania major strain for use in a controlled human infection model
Serum biomarkers in primary mitochondrial disorders
Stearoyl-CoA Desaturase-Mediated Monounsaturated Fatty Acid Availability Supports Humoral Immunity
Monocytes carrying GFAP detect glioma, brain metastasis and ischaemic stroke, and predict gliobla…
Presentations
Homeostasis
PLANT MITOCHONDRIAL BIOLOGY
Photosynthesis
Endocrine Disorders
THE PITUITARY GLAND
Posters
ACMT 2020 Annual Scientific Meeting Abstracts - New York, NY
Abstracts from the 2020 Annual Scientific Meeting of the British and Irish Hypertension Society (…
ACNP 58th Annual Meeting: Poster Session III
ACNP 58th Annual Meeting: Poster Session II
ACNP 58th Annual Meeting: Poster Session I