The development of sex-specific characteristics is frequently seen in mammals. These characteristics stem from the activation of corresponding genetic programmes that until now have been largely undescribed by the scientific community.
An international research team for the first time, decoded the programmes that control the sex-specific development of major organs in selected mammals – humans, mice, rats, rabbits, and opossums. By comparing these programmes, the researchers were also able to trace the evolution of sex-specific organ characteristics.
Sexual dimorphism describes the development of secondary sex characteristics and in biology refers to the differences in the appearance of sexually mature males and females of the same species that are unrelated to the reproductive organs. Such sex-specific characteristics include clearly identifiable differences in the size and coloration of the body, or the development of different organs, such as antlers in male deer. In addition, there are less obvious differences in terms of the size, function, and cellular composition of internal organs.
In humans, these differences, in the liver for example, can lead to sex-specific processing or efficacy of medications, according to the research lead.
The development of mammalian organs before and after birth is controlled by the finely tuned and complex interaction of many different genes – also known as gene expression programmes.
“Overall, this development-related gene expression is fairly well understood, among other things through the work in our lab. Until now, however, what was largely unknown was how these programmes differ between female and male individuals and the effects these differences have on the function and cellular composition of organs in adult mammals,” explains the graduate student.
The researchers finally succeeded in systematically mapping the genes at the organ and cellular level that are primarily active in only one of the two sexes during development and therefore lead to the formation of different organ characteristics in female and male individuals. On the basis of sequencing data and by applying bioinformatic analysis methods, the researchers discovered a surprising pattern that applies to all the mammals they studied: “Almost all of the differences in gene expression abruptly develop only in puberty. That means that the genetic programmes responsible for the development of sex-specific organ characteristics are turned on almost exclusively late in the development of the organs, triggered by female or male hormones,” states the senior author.
To also understand the evolution of these gene regulatory programmes, the researchers compared their results for the various mammals in detail. “In most species we studied, the liver and kidneys exhibit numerous differences in gene expression between the sexes, which in turn lead to marked sex-specific differences in the functionality of these organs,” explains another author. The researchers further learned that these differences between the sexes occur across mammals in the same organs and the same cell types in these organs; but they mostly occur through the activity of different genes.
The current findings illustrate the rapid evolution of sex-specific characteristics, which according to the authors are probably due to different challenges during speciation. “One exception are the few genes found on X and Y sex chromosomes that presumably function as basic genetic triggers for the development of sex-specific characteristics in all mammals,” explains the researcher.
https://www.science.org/doi/10.1126/science.adf1046
Genetic programmes underlie sex-specific mammalian organs
- 1,277 views
- Added
Latest News
A bacterial defense with po…
By newseditor
Posted 06 Sep
Type I interferon responses…
By newseditor
Posted 06 Sep
Cellular pathways to Alzhei…
By newseditor
Posted 06 Sep
A blood-based assay for the…
By newseditor
Posted 06 Sep
People who lack the immune…
By newseditor
Posted 06 Sep
Other Top Stories
Combination therapy to treat glioma
Read more
A distinct bacterial clade dominates the colorectal cancer niche
Read more
Adaptation tactics of pancreatic cancer
Read more
p53 remodels 3D chromatin to trigger cellular stress response
Read more
A missing link between poor diet and higher cancer risk uncovered!
Read more
Protocols
Clinical utility of a blood…
By newseditor
Posted 06 Sep
A glia-enriched stem cell 3…
By newseditor
Posted 01 Sep
Mouse models to investigate…
By newseditor
Posted 30 Aug
A brief guide to studying e…
By newseditor
Posted 28 Aug
Single-cell EpiChem jointly…
By newseditor
Posted 24 Aug
Publications
An AP2/ERF transcription fa…
By newseditor
Posted 09 Sep
Plp1-expresssing perineuron…
By newseditor
Posted 09 Sep
Biallelic variants in SNUPN…
By newseditor
Posted 08 Sep
Mitochondrial membrane lipi…
By newseditor
Posted 07 Sep
Microbial production of an…
By newseditor
Posted 07 Sep
Presentations
Hydrogels in Drug Delivery
By newseditor
Posted 12 Apr
Lipids
By newseditor
Posted 31 Dec
Cell biology of carbohydrat…
By newseditor
Posted 29 Nov
RNA interference (RNAi)
By newseditor
Posted 23 Oct
RNA structure and functions
By newseditor
Posted 19 Oct
Posters
A chemical biology/modular…
By newseditor
Posted 22 Aug
Single-molecule covalent ma…
By newseditor
Posted 04 Jul
ASCO-2020-HEALTH SERVICES R…
By newseditor
Posted 23 Mar
ASCO-2020-HEAD AND NECK CANCER
By newseditor
Posted 23 Mar
ASCO-2020-GENITOURINARY CAN…
By newseditor
Posted 23 Mar