Evidence suggests that what happens in one generation--diet, toxin exposure, trauma, fear--can have lasting effects on future generations. Scientists believe these effects result from epigenetic changes that occur in response to the environment and turn genes on or off without altering the genome or DNA sequence.
But how these changes are passed down through generations has not been understood, in part, because scientists have not had a simple way to study the phenomenon. A new study by researchers provides a potential tool for unraveling the mystery of how experiences can cause inheritable changes to an animal's biology. By mating nematode worms, they produced permanent epigenetic changes that lasted for more than 300 generations. The research was published in the journal Nature Communications.
In the new study, the team found while breeding nematode worms that some matings led to epigenetic changes in offspring that continued to be passed down through as many generations as the scientists continued to breed them. This discovery will enable scientists to explore how epigenetic changes are passed to future generations and what characteristics make genes susceptible to permanent epigenetic changes.
The team began this work in 2013, while working with nematode worms, Caenorhabditis elegans (C. elegans), a species often used as a model for understanding animal biology. The scientists noticed that worms bred to carry a gene they called T, which produces fluorescent proteins, sometimes glowed and sometimes didn't. This was puzzling because the glowers and the non-glowers had nearly identical DNA.
"Everything began when we stumbled upon a rare gene that underwent permanent change for hundreds of generations just by mating. We could have easily missed it," said a co-lead author of the study.
To understand the phenomenon better, the researchers conducted breeding experiments in which only the mother or the father carried the fluorescent gene. The team expected that no matter which parent carried the gene, the offspring would glow. Instead, they found that when the mother carried the fluorescent gene, the offspring always glowed, meaning the gene was always turned on. But when the father carried the gene, the offspring usually weakly glowed or did not glow at all.
"We found that there are these RNA-based signals controlling gene expression," the author said. "Some of these signals silence the gene and some of them are protective signals that prevent silencing. These signals are duking it out as the offspring develop. When the gene comes from the mother, the protective signal always wins, but when the gene comes from the father, the silencing signal almost always wins."
When the silencing signal wins, the gene is silenced for good, or for at least 300 generations, which is how long the authors followed their laboratory-bred worms. Previous examples of epigenetic changes were more complex or they did not last more than a couple of generations. The researchers don't yet know why the silencing signal only wins some of the time, but this new finding puts them in a much better position to explore the details of epigenetic inheritance than ever before.
"While we've found a set of genes that can be silenced almost permanently, most other genes are not affected the same way," said the study's other co-lead author. "After silencing, they bounce back and become expressed in future generations."
With their new findings, the researchers now believe some genes could be more vulnerable to permanent epigenetic change while other genes recover within a few generations. Although studies in worms are not the same as in humans, the research provides a window into biological processes that are likely shared, at least in part, by all animals.
"The two big advantages we now have from this work are that this long-lasting epigenetic change is easy to induce through mating, and that it occurs at the level of a single gene," the senior author said. "Now we can manipulate this gene and control everything about it, which will allow us to determine what characteristics make a gene susceptible or resistant to heritable epigenetic change."
https://cmns.umd.edu/news-events/features/4812
https://www.nature.com/articles/s41467-021-24053-4
http://sciencemission.com/site/index.php?page=news&type=view&id=publications%2Fmating-can-initiate&filter=22
Mating can cause epigenetic changes that last for 300 generations
- 1,021 views
- Added
Edited
Latest News
Reconstructing brain connec…
By newseditor
Posted 29 May
Leishmania parasite manipul…
By newseditor
Posted 29 May
How apoE4 and complement fa…
By newseditor
Posted 28 May
Computational design of dyn…
By newseditor
Posted 28 May
Sphingosine-1-phosphate tra…
By newseditor
Posted 28 May
Other Top Stories
Body fat hormone leptin influences runner's high
Read more
Mutation in potassium-chloride transporter causes epilepsy!
Read more
Molecular mechanisms involved in remyelination
Read more
Mechanism of recruitment of synaptic receptors
Read more
Central cholinergic neurons respond to reward stimuli
Read more
Protocols
BigNeuron: A resource to be…
By newseditor
Posted 29 May
Designed active-site librar…
By newseditor
Posted 27 May
A microfluidics-enabled aut…
By newseditor
Posted 22 May
TomoTwin: generalized 3D lo…
By newseditor
Posted 17 May
Optimization and validation…
By newseditor
Posted 16 May
Publications
A 360 view of the inflammas…
By newseditor
Posted 29 May
Exercise suppresses neuroin…
By newseditor
Posted 29 May
Activation, decommissioning…
By newseditor
Posted 29 May
NIH Music-Based Interventio…
By newseditor
Posted 29 May
Citrus fruits, vitamin D, a…
By newseditor
Posted 29 May
Presentations
Hydrogels in Drug Delivery
By newseditor
Posted 12 Apr
Lipids
By newseditor
Posted 31 Dec
Cell biology of carbohydrat…
By newseditor
Posted 29 Nov
RNA interference (RNAi)
By newseditor
Posted 23 Oct
RNA structure and functions
By newseditor
Posted 19 Oct
Posters
ASCO-2020-HEALTH SERVICES R…
By newseditor
Posted 23 Mar
ASCO-2020-HEAD AND NECK CANCER
By newseditor
Posted 23 Mar
ASCO-2020-GENITOURINARY CAN…
By newseditor
Posted 23 Mar
ASCO-2020-GENITOURINARY CAN…
By newseditor
Posted 10 Mar
ASCO-2020-GYNECOLOGIC CANCER
By newseditor
Posted 10 Mar