The mutation of a gene that has been associated with neurodevelopmental disorders like autism spectrum disorder led to marked sleep disturbances in fruit flies, according to a new study. The findings, published in Science Advances, provide further evidence that sleep is linked to early neurodevelopmental processes and could guide future treatments for patients.
While sleep disruption is a commonly reported symptom across neurodevelopmental disorders, including autism, it is often treated clinically as a "secondary effect" of other cognitive or behavioral problems, according to senior author.
"Our paper shows that sleep problems are not arising because of these other issues, but rather, this gene acts in different brain circuits, at different periods of time during development, to independently give rise to each of these symptoms," the author said. "Which is to say, we're guessing that the genetic constellation or signaling pathway that leads to disorders like autism or depression can also lead to sleep problems in humans."
To identify a correlation between sleep and neurodevelopment, the team genetically manipulated Drosophila, or fruit flies, by individually "knocking down" each of 218 genes that have been strongly associated with risk for neurodevelopmental disorders in humans. They then observed how the flies -- a remarkably powerful model for biomedical research -- reacted.
After observing the flies' behavioral patterns, they saw that knocking down the gene Imitation SWItch/SNF (ISWI) made the fruit flies almost entirely unable to sleep. ISWI in fruit flies is homologous to SMARCA1 and SMARCA5 genes in humans that have been linked to various neurodevelopmental disorders. In addition to sleep deficits, the researchers found that knocking down ISWI also led to memory problems and social dysfunction. Surprisingly, the ISWI gene was found to act in different cells of the fly brain during distinct developmental times to independently affect each of these behaviors.
Importantly, even though sleep deficits appear to arise directly from dysfunction of a given gene, the senior author said that previous research suggests treatments like cognitive behavioral therapy for insomnia are still likely to be effective.
"Even if problems like sleep disruption or insomnia arise from really early problems in the brain's wiring, we have every reason to believe that we can use existing treatments," the author said.
The findings support the idea that treating sleep problems in children with neurodevelopmental disorders could potentially improve other symptoms. Future work will examine the potential for leveraging sleep as a modifiable risk factor in mitigating the severity of neurodevelopmental disorders.
"Now that we know that sleep deficits are a primary characteristic of early developmental origin in neurodevelopmental disorders, we can start to ask," the senior author said, "whether improving sleep will also improve memory and social function."
https://advances.sciencemag.org/content/7/8/eabe2597
http://sciencemission.com/site/index.php?page=news&type=view&id=publications%2Fthe-chromatin-remodeler&filter=22
Neurodevelopmental risk gene linked to sleep problems
- 294 views
- Added
Edited
Latest News
Neuromodulation of the cerebellum restore movement in ataxia
Carbohydrate slime makes cystic fibrosis bacteria antibiotic resistant
Linking heart failure to memory impairment
Reset of hippocampal-prefrontal circuitry facilitates learning
Zone 2 hepatocytes help in maintenance and regeneration of liver
Other Top Stories
LINKED affects brain, craniofacial skeleton
Genetic analysis implicate specific genes in post-traumatic stress disorder
Increasing crop and nutrient yield in rice using genetics
Genes for face shape identified
Strong link between genetic changes known to cause cerebral palsy
Protocols
Dual-Angle Protocol for Doppler Optical Coherence Tomography to Improve Retinal Blood Flow Measur…
Detection of protein SUMOylation in vivo
In vivo analysis of protein sumoylation induced by a viral protein: Detection of HCMV pp71-induce…
Determination of SUMOylation sites
miR-Selection 3'UTR Target Selection Kit
Publications
Neuromodulation of the cerebellum rescues movement in a mouse model of ataxia
Pseudomonas aeruginosa aggregates in cystic fibrosis sputum produce exopolysaccharides that likel…
Epigenetic gene expression links heart failure to memory impairment
Vaccines for older adults
Breaks in mitochondrial DNA rig immune response
Presentations
The Neurobiology of Addiction
Liver Cirrhosis
Botulinum toxin
Bioplar Disorder
G-Protein-Coupled Receptors
Posters
ASCO-2020-GASTROINTESTINAL CANCER–COLORECTAL AND ANAL
ASCO-2020-DEVELOPMENTAL THERAPEUTICS–IMMUNOTHERAPY
ASCO-2020-DEVELOPMENTAL THERAPEUTICS–MOLECULARLY TARGETED AGENTS AND TUMOR BIOLOGY
ASCO-2020-CENTRAL NERVOUS SYSTEM TUMORS
ASCO-2020-DEVELOPMENTAL THERAPEUTICS–IMMUNOTHERAPY