When our neurons -- the principal cells of the brain -- die, so do we.
Most neurons are created during embryonic development and have no "backup" after birth. Researchers have generally believed that their survival is determined nearly extrinsically, or by outside forces, such as the tissues and cells that neurons supply with nerve cells.
A research team has challenged this notion and reports the continuous survival of neurons is also intrinsically programmed during development.
The study, published in the journal Neuron, identifies a mechanism the researchers say is triggered at neuron birth to intrinsically decrease a general form of cell death -- or "apoptosis" -- specifically in neurons. When this genetic regulation is stopped, continuous neuronal survival is disrupted and leads to the death of the animal.
An organism's survival, brain function, and fitness are dependent upon the survival of its neurons. In higher organisms, neurons control breathing, feeding, sensation, motion, memory, emotion, and cognition. They can die of many unnatural causes, such as neurodegenerative diseases, injury, infection, and trauma. Neurons are long-lived cells, but the genetic controls that enable their longevity are unknown.
The team now reports the central piece of the mechanism involved is a small piece of genetic sequence in Bak1, a pro-apoptotic gene whose activation leads to apoptosis. Bak1 expression is turned off when this small piece of genetic sequence, termed microexon, is spliced in the final Bak1 gene product. Exons are sequences that make up messenger RNA.
"Apoptosis is a pathway that controls cell turnover and tissue homeostasis in all metazoans," explained Zheng, an associate professor of biomedical sciencethe senior author. "Most non-neural cells readily engage in apoptosis in response to intrinsic and extrinsic stress. But this cellular suicidal program needs to be reined in for neurons so that they live for many years. We now show how genetic attenuation of neuronal apoptosis takes place."
The team identified the Bak1 microexon through a large-scale analysis of expression data from human tissues, mouse tissues, human developing brains, mouse developing forebrains, and mouse developing midbrains. The team first compared neural tissues with non-neural tissues in both humans and mice to identify neural-specific exons. Then, they found cortical neurons reduce their sensitivity to apoptosis as early as neuron birth. They also found apoptosis is gradually reduced during neuronal development before neurons make connections or innervate other cells, suggesting factors other than extrinsic signals can play a role.
"We show neurons transform how they regulate cell death during development," the author said. "This is to ensure neuronal longevity, which is needed to maintain the integrity of neural circuits for brain functions."
Next, the team will study whether the identified mechanism is activated in neurodegenerative diseases and injury that cause neuronal cell death.
https://www.cell.com/neuron/pdf/S0896-6273(20)30490-6.pdf?
Why neurons have a longer life than other cells
- 1,288 views
- Added
Edited
Latest News
A vascularized model of the human liver regeneration
Norovirus and other "stomach viruses" can spread through saliva
GPUs to discover human brain connectome
Computer models predict Face dissimilarity
Activation of a glycolytic enzyme in the metastasis of pancreatic cancer
Other Top Stories
A new role for B-complex vitamins in promoting stem cell proliferation
Breakthrough in scaling up life-changing stem cell production
Two proteins safeguard skin stem cells
Original cell type does not affect iPS cell differentiation to blood
Mass produce human neurons for studying neuropsychiatric disorders
Protocols
Light and electron microscopic imaging of synaptic vesicle endocytosis at mouse hippocampal cultures
FLAMBE: A kinetic fluorescence polarization assay to study activation of monomeric BAX
Single-cell mass spectrometry
A behavioral paradigm for measuring perceptual distances in mice
Rapid detection of an Ebola biomarker with optical microring resonators
Publications
Conserved meningeal lymphatic drainage circuits in mice and humans
Junctional instability in neuroepithelium and network hyperexcitability in a focal cortical dyspl…
A vascularized model of the human liver mimics regenerative responses
Mobilization-based chemotherapy-free engraftment of gene-edited human hematopoietic stem cells
Enteric viruses replicate in salivary glands and infect through saliva
Presentations
Hydrogels in Drug Delivery
Lipids
Cell biology of carbohydrate metabolism
RNA interference (RNAi)
RNA structure and functions
Posters
ASCO-2020-HEALTH SERVICES RESEARCH AND QUALITY IMPROVEMENT
ASCO-2020-HEAD AND NECK CANCER
ASCO-2020-GENITOURINARY CANCER–KIDNEY AND BLADDER
ASCO-2020-GENITOURINARY CANCER–PROSTATE, TESTICULAR, AND PENILE
ASCO-2020-GYNECOLOGIC CANCER