New research suggests a strategy to ward off age-related weight gain, which could prevent obesity and associated health disorders like Type 2 diabetes, heart disease and chronic inflammation.
By stimulating the production of a certain type of fat cells, the effects of a slowing metabolism could be reversed, according to a new study.
Mammals, including humans, have two main types of fat: white adipose tissue (WAT), which stores energy from excess calorie intake, and brown adipose tissue (BAT), which burns calories to produce heat to maintain body temperature.
The study, published in Nature Communications, shows therapeutic promise in a third type of fat, a subtype of WAT: beige fat. Beige fat has the same cellular precursors as white fat and the same thermogenic properties as brown fat, which means it helps to reduce blood sugar and the fatty acids that cause hardening of the arteries and heart disease.
When a person experiences sustained exposure to cold temperatures, stem cells known as adipose progenitor cells form thermogenic beige fat cells within white fat. As people age, the response to that stimulus weakens, tipping the balance toward white fat production.
“There are seasonal changes in beige fat in young humans,” said the senior author, “but an older person would have to stand outside in the snow in their underwear to get those same effects.”
In earlier work, the authors observed that the aging process impairs the formation of beige fat cells in response to cold temperatures. Identify the biochemistry behind the slowdown, he said, and the same process could be reversed to achieve therapeutic outcomes.
“This is the ultimate goal,” said the lead author of the new study. “Without having to subject people to cold exposure for prolonged periods of time, are there metabolic pathways we can stimulate that could produce the same effect?”
In the paper, they reveal the role of a specific signaling pathway that suppresses beige fat formation in older mice by antagonizing the immune system. By suppressing that pathway in aging mice, the scientists were able to prompt beige fat production in animals that otherwise formed only in WAT.
The researchers show that ageing beige adipocyte progenitor cells (APCs) overexpress platelet derived growth factor receptor beta (Pdgfrβ) to prevent beige adipogenesis. They show that genetically deleting Pdgfrβ, in adult male mice, restores beige adipocyte generation whereas activating Pdgfrβ in juvenile mice blocks beige fat formation.
Mechanistically, the authors find that Stat1 phosphorylation mediates Pdgfrβ beige APC signaling to suppress IL-33 induction, which dampens immunological genes such as IL-13 and IL-5. Moreover, pharmacologically targeting Pdgfrβ signaling restores beige adipocyte development by rejuvenating the immunological niche.
https://www.nature.com/articles/s41467-023-37386-z
http://sciencemission.com/site/index.php?page=news&type=view&id=publications%2Fage-dependent-pdgfr&filter=22
'Beige fat' and aging
- 971 views
- Added
Edited
Latest News
Citrullination is a key pla…
By newseditor
Posted 14 Sep
Senolytic therapy clinical…
By newseditor
Posted 14 Sep
Genetic tools probe microbi…
By newseditor
Posted 13 Sep
A secret passage for mutant…
By newseditor
Posted 11 Sep
Specialized T cells in the…
By newseditor
Posted 10 Sep
Other Top Stories
Patient derived human brain organoids mimic an autism spectrum diso…
Read more
A master regulator to boost supply of life-saving blood stem cells
Read more
Functioning thymus from human cells
Read more
Cancer-Related Mutations Are Not Enriched in Naive Human Pluripoten…
Read more
Eight genes enough to convert mouse stem cells into oocyte-like cells
Read more
Protocols
Genetic manipulation of Pat…
By newseditor
Posted 13 Sep
Single-nucleus RNA sequenci…
By newseditor
Posted 08 Sep
Engineering RNA export for…
By newseditor
Posted 25 Aug
ATP production from electri…
By newseditor
Posted 21 Aug
Labeling PIEZO2 activity in…
By newseditor
Posted 20 Aug
Publications
Timing of lifespan influenc…
By newseditor
Posted 16 Sep
Transformer-based biomarker…
By newseditor
Posted 16 Sep
Somatic variants of MAP3K3…
By newseditor
Posted 16 Sep
The NLRP3 inflammasome and…
By newseditor
Posted 15 Sep
Targeting the metabolism of…
By newseditor
Posted 15 Sep
Presentations
Hydrogels in Drug Delivery
By newseditor
Posted 12 Apr
Lipids
By newseditor
Posted 31 Dec
Cell biology of carbohydrat…
By newseditor
Posted 29 Nov
RNA interference (RNAi)
By newseditor
Posted 23 Oct
RNA structure and functions
By newseditor
Posted 19 Oct
Posters
A chemical biology/modular…
By newseditor
Posted 22 Aug
Single-molecule covalent ma…
By newseditor
Posted 04 Jul
ASCO-2020-HEALTH SERVICES R…
By newseditor
Posted 23 Mar
ASCO-2020-HEAD AND NECK CANCER
By newseditor
Posted 23 Mar
ASCO-2020-GENITOURINARY CAN…
By newseditor
Posted 23 Mar