In the United States, substance use disorders are a leading cause of death among young people. Treatments such as deep brain stimulation hold promise for helping people overcome addiction, but many questions remain about what brain areas should be targeted.
Researchers are gaining new insights from patients who are no longer addicted to nicotine after experiencing a brain lesion, such as a stroke. Using a new technique known as lesion network mapping, researchers have mapped addiction remission to entire brain circuits rather than specific brain regions, pointing to new targets for treatment. Their results are published in Nature Medicine.
“By looking beyond individual brain regions and, instead, at the brain circuit, we have found targets for addiction remission and are eager to rigorously test them through clinical trials,” said the senior author. “Ultimately, our goal is to take larger steps towards improving existing therapies for addiction and open the door for remission.”
Neuromodulation therapies, such as deep brain stimulation, transcranial magnetic stimulation, and MRI-guided focused ultrasound, allow clinicians directly target brain circuits and improve symptoms in ways that may not be possible through treatment with medication. But knowing the location to target is critical. In a previous study, researchers used lesion network mapping to examine patients whose essential tremors resolved, confirming targets used in treatment with deep brain stimulation. The study authors set out to apply the same approach to addiction remission.
“Although we know a great deal about the neurobiological mechanisms in addiction, treatment options are still very limited. Our findings with essential tremor made us realize the potential of this approach to localize key brain circuits mediating symptom improvement,” said the lead author.
The authors used data from two independent cohorts of patients addicted to nicotine who then suffered a brain lesion, usually from a stroke. The team compared lesions in patients who were unable to quit smoking to lesions resulting in remission of smoking addiction. They then used a database known as the human connectome to map each lesion to the larger brain circuit. They found that the two smoking lesions datasets that led to remission of smoking addiction mapped to a specific brain circuit. To their surprise, they also discovered in a third alcoholism lesion dataset that a reduced risk of alcoholism mapped to a similar brain circuit, suggesting a potentially therapeutic, targetable neural pathway for addiction in general, rather than addiction to a specific substance.
“Although neuromodulation treatments using electricity or even brain lesions have shown promise in relieving substance addiction, the therapeutic target has been unclear,” said the senior author. “Now that our study has identified a target — a specific human brain circuit — we hope to test whether targeted neuromodulation to this brain circuit provides sustainable symptom relief to our patients.”
The authors acknowledge two primary study limitations. First, the results are solely based on retrospective analysis of existing datasets and, second, the datasets examined only covered specific substances of abuse. The researchers therefore advocate for prospective validation of their findings through clinical trials testing and an examination of additional substances of addiction to determine if their findings can be applied widely.
“We were excited to discover that our mapped lesions associated with addiction remission led back to a common brain circuit. While our findings point towards therapeutic targets for addiction, we need to test these targets in randomized clinical trials,” said the author. “We study brain lesions in the context of the brain circuit because it provides a powerful way to understand the causal links between addiction and our neuroanatomy. We have hope that we can make significant strides towards helping patients with substance use disorders.”
https://www.nature.com/articles/s41591-022-01834-y
http://sciencemission.com/site/index.php?page=news&type=view&id=publications%2Fbrain-lesions&filter=22
A brain circuit for addiction remission
- 1,133 views
- Added
Latest News
A bacterial defense with po…
By newseditor
Posted 06 Sep
Type I interferon responses…
By newseditor
Posted 06 Sep
Cellular pathways to Alzhei…
By newseditor
Posted 06 Sep
A blood-based assay for the…
By newseditor
Posted 06 Sep
People who lack the immune…
By newseditor
Posted 06 Sep
Other Top Stories
Inhibiting histone deacetylase6 lowers obesity in mice
Read more
Turning human islet amyloid polypeptide (hIAPP) into amyloid fibril…
Read more
Reprogramming of human pancreatic cells in type 1 diabetes
Read more
Linking brain stress factor to obesity!
Read more
Cancer receptor ligand protein regulates body weight
Read more
Protocols
Clinical utility of a blood…
By newseditor
Posted 06 Sep
A glia-enriched stem cell 3…
By newseditor
Posted 01 Sep
Mouse models to investigate…
By newseditor
Posted 30 Aug
A brief guide to studying e…
By newseditor
Posted 28 Aug
Single-cell EpiChem jointly…
By newseditor
Posted 24 Aug
Publications
Biallelic variants in SNUPN…
By newseditor
Posted 08 Sep
Mitochondrial membrane lipi…
By newseditor
Posted 07 Sep
Microbial production of an…
By newseditor
Posted 07 Sep
Spatially clustered type I…
By newseditor
Posted 06 Sep
Cellular communities reveal…
By newseditor
Posted 06 Sep
Presentations
Hydrogels in Drug Delivery
By newseditor
Posted 12 Apr
Lipids
By newseditor
Posted 31 Dec
Cell biology of carbohydrat…
By newseditor
Posted 29 Nov
RNA interference (RNAi)
By newseditor
Posted 23 Oct
RNA structure and functions
By newseditor
Posted 19 Oct
Posters
A chemical biology/modular…
By newseditor
Posted 22 Aug
Single-molecule covalent ma…
By newseditor
Posted 04 Jul
ASCO-2020-HEALTH SERVICES R…
By newseditor
Posted 23 Mar
ASCO-2020-HEAD AND NECK CANCER
By newseditor
Posted 23 Mar
ASCO-2020-GENITOURINARY CAN…
By newseditor
Posted 23 Mar