A research team has found a small area of the brain in mice that can profoundly control the animals' sense of pain.
Somewhat unexpectedly, this brain center turns pain off, not on. It's also located in an area where few people would have thought to look for an anti-pain center, the amygdala, which is often considered the home of negative emotions and responses, like the fight or flight response and general anxiety.
"People do believe there is a central place to relieve pain, that's why placebos work," said senior author. "The question is where in the brain is the center that can turn off pain."
"Most of the previous studies have focused on which regions are turned ON by pain," the senior author said. "But there are so many regions processing pain, you'd have to turn them all off to stop pain. Whereas this one center can turn off the pain by itself."
The work is a follow-up to earlier research in the lab looking at neurons that are activated, rather than suppressed, by general anesthetics. In a 2019 study, they found that general anesthesia promotes slow-wave sleep by activating the supraoptic nucleus of the brain. But sleep and pain are separate, an important clue that led to the new finding, which appears in Nature Neuroscience.
The researchers found that general anesthesia also activates a specific subset of inhibitory neurons in the central amygdala, which they have called the CeAga neurons (CeA stands for central amygdala; ga indicates activation by general anesthesia). Mice have a relatively larger central amygdala than humans, but the senior author had no reason to think we have a different system for controlling pain.
Using technologies that the lab has pioneered to track the paths of activated neurons in mice, the team found the CeAga was connected to many different areas of the brain, "which was a surprise," the senior author said.
By giving mice a mild pain stimulus, the researchers could map all of the pain-activated brain regions. They discovered that at least 16 brain centers known to process the sensory or emotional aspects of pain were receiving inhibitory input from the CeAga.
"Pain is a complicated brain response," the senior author said. "It involves sensory discrimination, emotion, and autonomic (involuntary nervous system) responses. Treating pain by dampening all of these brain processes in many areas is very difficult to achieve. But activating a key node that naturally sends inhibitory signals to these pain-processing regions would be more robust."
Using a technology called optogenetics, which uses light to activate a small population of cells in the brain, the researchers found they could turn off the self-caring behaviors a mouse exhibits when it feels uncomfortable by activating the CeAga neurons. Paw-licking or face-wiping behaviors were "completely abolished" the moment the light was switched on to activate the anti-pain center.
"It's so drastic," the senior author said. "They just instantaneously stop licking and rubbing."
When the scientists dampened the activity of these CeAga neurons, the mice responded as if a temporary insult had become intense or painful again. They also found that low-dose ketamine, an anesthetic drug that allows sensation but blocks pain, activated the CeAga center and wouldn't work without it.
Now the researchers are going to look for drugs that can activate only these cells to suppress pain as potential future pain killers, the senior author said.
"The other thing we're trying to do is to (transcriptome) sequence the hell out of these cells," the author said. The researchers are hoping to find the gene for a rare or unique cell surface receptor among these specialized cells that would enable a very specific drug to activate these neurons and relieve pain.
ttps://today.duke.edu/2020/05/neurobiologist-finds-potent-pain-suppression-center-brain
https://www.nature.com/articles/s41593-020-0632-8
A central pain-suppression circuit in the amygdala activated by general anesthetics
- 1,068 views
- Added
Edited
Latest News
Citrullination is a key pla…
By newseditor
Posted 14 Sep
Senolytic therapy clinical…
By newseditor
Posted 14 Sep
Genetic tools probe microbi…
By newseditor
Posted 13 Sep
A secret passage for mutant…
By newseditor
Posted 11 Sep
Specialized T cells in the…
By newseditor
Posted 10 Sep
Other Top Stories
Regulating lysosome biogenesis
Read more
How cells control protein synthesis under nutritional constraints
Read more
How RNA splicing defects contribute to Alzheimer's disease
Read more
How proteins are inserted into the mitochondrial outer membrane
Read more
A mechanism to degrade autophagosome in plants
Read more
Protocols
D-LMBmap: a fully automated…
By newseditor
Posted 30 Sep
Genetic manipulation of Pat…
By newseditor
Posted 13 Sep
Single-nucleus RNA sequenci…
By newseditor
Posted 08 Sep
Engineering RNA export for…
By newseditor
Posted 25 Aug
ATP production from electri…
By newseditor
Posted 21 Aug
Publications
Alteration in the chromatin…
By newseditor
Posted 30 Sep
Identification of genes req…
By newseditor
Posted 29 Sep
Mitochondrial degradation:…
By newseditor
Posted 29 Sep
The promise of new anti-obe…
By newseditor
Posted 29 Sep
Timing of lifespan influenc…
By newseditor
Posted 16 Sep
Presentations
Hydrogels in Drug Delivery
By newseditor
Posted 12 Apr
Lipids
By newseditor
Posted 31 Dec
Cell biology of carbohydrat…
By newseditor
Posted 29 Nov
RNA interference (RNAi)
By newseditor
Posted 23 Oct
RNA structure and functions
By newseditor
Posted 19 Oct
Posters
A chemical biology/modular…
By newseditor
Posted 22 Aug
Single-molecule covalent ma…
By newseditor
Posted 04 Jul
ASCO-2020-HEALTH SERVICES R…
By newseditor
Posted 23 Mar
ASCO-2020-HEAD AND NECK CANCER
By newseditor
Posted 23 Mar
ASCO-2020-GENITOURINARY CAN…
By newseditor
Posted 23 Mar