The researchers built upon their earlier seminal work in which they discovered that a gene called HSD3B1, when altered, enables prostate tumors to evade treatment and proliferate. They went on to show that the presence of this gene variant does in fact change treatment outcomes and overall survival in men.
In the current study published in the journal Cell Reports, the team studied a related gene, called HSD17B4. Previous research showed that HSD17B4 encodes enzymes that inactivate androgens (male hormones). Since androgens are essential for prostate cancer growth, inactivating them should prevent cancer advancement. But these enzymes have also been observed to be more abundant in advanced prostate cancer. Therefore, until now it remained unclear whether the enzymes promote or suppress prostate cancer.
Therapy for advanced prostate cancer--called androgen deprivation therapy (ADT), or chemical castration--blocks cells' supply of androgens, which they use as fuel to grow and spread. While ADT is successful early on, it eventually fails, allowing the cancer to progress to a lethal phase called castration-resistant prostate cancer (CRPC).
To determine HSD17B4's role in the transition to CRPC, the team analyzed its expression in tissue from patients with healthy prostates, localized prostate cancer and CRPC. They found that HSD17B4 expression levels were relatively the same in benign and local prostate cancer tissue, but significantly reduced in CRPC tissue, suggesting that HSD17B4 does play a role in preventing progression to CRPC.
Through a series of analyses, the researchers found that only one specific isoform of HSD17B4--isoform 2--enzymatically inactivated androgens and prevented tumor growth. It is expressed during the early phases of prostate cancer, but is lost, or suppressed, in CRPC (advanced prostate cancer). Isoforms vary in amino acid sequence and physiological function, but not DNA code.
The team also validated their findings in a preclinical model. Their findings suggest that lack of isoform 2 leads to advanced CRPC. Additional research will be important to determine how HSD17B4 becomes silenced in CRPC and whether it may be used as a biomarker for patients at risk of dying from prostate cancer.
Latest News
A sperm-specific transporte…
By newseditor
Posted 02 Dec
How molecules in a cell int…
By newseditor
Posted 02 Dec
Genetic programmes underlie…
By newseditor
Posted 01 Dec
APOE variant neurons releas…
By newseditor
Posted 01 Dec
Reducing vitamin B5 slows b…
By newseditor
Posted 01 Dec
Other Top Stories
A brain circuit for addiction remission
Read more
Estimating tumor-specific total mRNA level predicts cancer outcomes
Read more
A unique neural microcircuit in ventromedial hypothalamus microcircuit
Read more
An exercise-inducible metabolite that suppresses feeding and obesity
Read more
Can centrosome heterogeneity in human neural cells be linked to dis…
Read more
Protocols
Cheap, cost-effective, and…
By newseditor
Posted 03 Dec
Temporally multiplexed imag…
By newseditor
Posted 02 Dec
Efficient elimination of ME…
By newseditor
Posted 01 Dec
Personalized drug screening…
By newseditor
Posted 30 Nov
Multi-chamber cardioids unr…
By newseditor
Posted 29 Nov
Publications
Mitochondria-lysosome-relat…
By newseditor
Posted 03 Dec
Stress granules plug and st…
By newseditor
Posted 03 Dec
Neuronal activation of Gaq…
By newseditor
Posted 02 Dec
Structures of a sperm-speci…
By newseditor
Posted 02 Dec
Formation and function of m…
By newseditor
Posted 02 Dec
Presentations
Hydrogels in Drug Delivery
By newseditor
Posted 12 Apr
Lipids
By newseditor
Posted 31 Dec
Cell biology of carbohydrat…
By newseditor
Posted 29 Nov
RNA interference (RNAi)
By newseditor
Posted 23 Oct
RNA structure and functions
By newseditor
Posted 19 Oct
Posters
A chemical biology/modular…
By newseditor
Posted 22 Aug
Single-molecule covalent ma…
By newseditor
Posted 04 Jul
ASCO-2020-HEALTH SERVICES R…
By newseditor
Posted 23 Mar
ASCO-2020-HEAD AND NECK CANCER
By newseditor
Posted 23 Mar
ASCO-2020-GENITOURINARY CAN…
By newseditor
Posted 23 Mar