A new preclinical model offers a unique platform for studying the Parkinson’s disease process and suggests a relatively easy method for detecting the disease in people, according to a new study.
In the study, published in Nature Communications, the researchers showed that knocking out a key component involved in protein transportation in the light-sensing rod cells of mice leads to the retinal accumulation of the aggregates of a protein called alpha-synuclein found in patients with Parkinson’s disease.
“This is a really unique model involving a pathology that seems more like human Parkinson’s than what we see in other mouse models,” said the senior author.
Parkinson’s disease, the second most common neurodegenerative disease after Alzheimer’s, affects approximately one million Americans, and is diagnosed in the United States at the rate of about 90,000 new cases annually. Although it is popularly known as a movement disorder, its effects on the brain and body are widespread and can include early vision problems, dementia, sleep disorders, and reduced intestinal function.
For the study, the researchers engineered mice that lack the gene for a protein called VPS35 just in rod cells, the main light-sensing neurons of the retina. VPS35 is known for helping cells to distribute molecules to their corresponding destinations, including sending abnormal proteins for degradation. A mutation in VPS35’s gene has been linked to a familial form of Parkinson’s disease.
The researchers observed that even in young mice, the rods lacking VPS35 soon lost their synapses—connection points to other neurons—resulting in visual impairment similar to seen in patients with Parkinson’s. Alpha-synuclein aggregates began to form, and eventually, as the affected rods began to die, the mouse retinas showed large, insoluble inclusions that looked like Lewy bodies, which contain alpha-synuclein aggregates and are one of the classic pathological signs of Parkinson’s disease.
As part of the study, the researchers traced VPS35’s interactions with other proteins and found evidence that it works not just in disposing of aggregated alpha-synuclein but also in preventing its aggregation.
“We think this explains why we saw such a strong effect of knocking out this protein,” the author said.
The results suggest that the new model could be very useful for studying disease mechanisms and testing potential therapies, she added. The model’s advantages include a rapidly developing disease process, and the absence of any artificial modification to the mice’s alpha-synuclein—unlike existing models that drive pathology using excess, mutant or non-mouse forms of the protein.
The findings with the new model also point to a potential new strategy for detecting Parkinson’s disease. Even in three-month old mice lacking rod-cell VPS35, the researchers could use a standard ophthalmological device called a fundoscope to observe bright spots of “autofluorescence” caused by molecules called lipofuscin, which associate with alpha-synuclein aggregates.
The authors also plas to investigate the use of VPS35-knockout mice for studying Alzheimer’s disease, since VPS35 mutations have been associated with that disease as well.
“This is the beginning of what we expect to be a very interesting exploration,” the author said.
Latest News
Brain cells that plan where…
By newseditor
Posted 12 Sep
A common fatty acid may hel…
By newseditor
Posted 12 Sep
Transcription factor functi…
By newseditor
Posted 12 Sep
Blood platelet score predic…
By newseditor
Posted 12 Sep
Mouse skin made transparent…
By newseditor
Posted 12 Sep
Other Top Stories
Key brain circuits for processing fear identified!
Read more
Eating whole grains led to modest improvements in gut microbiota an…
Read more
Exposure to stimuli for overcoming phobia
Read more
Neurons extrude 'exophers' containing protein aggregates and damage…
Read more
Cause of permanent vision loss after head injury discovered
Read more
Protocols
Modeling the atrioventricul…
By newseditor
Posted 11 Sep
Modeling the atrioventricul…
By newseditor
Posted 11 Sep
Fully defined NGN2 neuron p…
By newseditor
Posted 10 Sep
Clinical utility of a blood…
By newseditor
Posted 06 Sep
A glia-enriched stem cell 3…
By newseditor
Posted 01 Sep
Publications
Clinical sequelae of gut mi…
By newseditor
Posted 13 Sep
Neuroimmune interactions in…
By newseditor
Posted 13 Sep
Metabolism and HSC fate: wh…
By newseditor
Posted 13 Sep
Predictive grid coding in t…
By newseditor
Posted 12 Sep
Vaginal Lactobacillus fatty…
By newseditor
Posted 12 Sep
Presentations
Hydrogels in Drug Delivery
By newseditor
Posted 12 Apr
Lipids
By newseditor
Posted 31 Dec
Cell biology of carbohydrat…
By newseditor
Posted 29 Nov
RNA interference (RNAi)
By newseditor
Posted 23 Oct
RNA structure and functions
By newseditor
Posted 19 Oct
Posters
A chemical biology/modular…
By newseditor
Posted 22 Aug
Single-molecule covalent ma…
By newseditor
Posted 04 Jul
ASCO-2020-HEALTH SERVICES R…
By newseditor
Posted 23 Mar
ASCO-2020-HEAD AND NECK CANCER
By newseditor
Posted 23 Mar
ASCO-2020-GENITOURINARY CAN…
By newseditor
Posted 23 Mar